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Abstract: Carroll’s treatise on the structure of human cognitive abilities is a milestone in psychometric
intelligence research. Thirty years later, Carroll’s work continues to influence research on intelligence
theories and the development and interpretation of intelligence tests. A historical review of the
relations between the 3S and CHC theories necessitates the recommendation that the theories of
Cattell, Horn, and Carroll be reframed as a family of obliquely correlated CHC theories—not a single
CHC theory. Next, a previously unpublished Carroll exploratory factor analysis of 46 cognitive
and achievement tests is presented. A complimentary bifactor analysis is presented that reinforces
Carroll’s conclusion that his 3S model more accurately represents the structure of human intelligence
than two prominent alternative models. Finally, a Carroll-recommended higher-stratum psychometric
network analysis (PNA) of CHC cognitive, reading, and math variables is presented. The PNA results
demonstrate how PNA can complement factor analysis and serve as a framework for identifying and
empirically evaluating cognitive–achievement causal relations and mechanisms (e.g., developmental
cascade and investment theories), with an eye toward improved cognitive–achievement intervention
research. It is believed that Carroll, given his long-standing interest in school learning, would
welcome the integration of theory-driven factor and PNA research.

Keywords: intelligence; Carroll; Horn; Cattell; three-stratum theory; CHC theory; Gf-Gc; factor
analysis; psychometric network analysis

1. Introduction

Carroll’s enduring legacy is captured by Beaujean’s (2015) statement, over 25 years
later, that “the importance of his Human Cognitive Abilities book probably cannot be over-
stated. It is arguably one of the most influential works in the history of intelligence research”
(p. 132).

This paper is dedicated to the memory of Jack Carroll. My 17-year informal mentor–
mentee relationship with Carroll culminated in a week of collaborative activities where I
lived and worked with Carroll in Fairbanks, Alaska, a little over a month before his passing
on 1 July 2003. Much was accomplished during this week in May. Unfortunately, several
of our planned collaborative tasks languished for approximately 20 years after his death.
Several of these activities were completed for this paper, which is organized into three
major sections.

First is a historical section that briefly describes the impact of Carroll’s 3S theory on
CHC theory and intelligence test development and interpretation. This is followed by a
clarification of the confusion surrounding the incorporation of Carroll’s 3S theory as part of
CHC theory. This elucidation is necessary as semantic drift has beset the original intent
of the term CHC theory. This section is, by necessity, a conflated mixture of personal and
professional memories and reflections. The second section presents a previously unpub-
lished Carroll exploratory factor analysis of a collection of 46 cognitive and achievement
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variables completed collaboratively with Carroll in May 2003. Consistent with Carroll’s
(2003) last factor analysis publication, the final exploratory 46-test structure served as the
starting point for a recently completed (summer 2022) bifactor confirmatory factor analysis
(CFA) of the 46 tests. The last section extends the 46-test factor model via two psychometric
network analyses (PNAs) of factor model-derived CHC composite variables. Ironically, the
PNA of Carroll’s last known g-dominated factor analyses eschews the inclusion of a latent g
factor. Yet, as explained herein, these non-g PNA models would likely be viewed favorably
by Carroll as they are consistent with his long-held belief that some broad and narrow
cognitive abilities are central to understanding the causal mechanisms of intelligence and
school learning (Carroll 1993, 1998).

2. Carroll’s 3S Theory Impact on CHC Theory and Intelligence Testing

Carroll’s work is frequently melded with the theoretical work of Raymond Cattell
and John Horn as the Cattell–Horn–Carroll (CHC) theory of cognitive abilities (McGrew
2009), the most widely recognized psychometric taxonomy of cognitive abilities (McGrew
2005, 2009; Schneider and McGrew 2012, 2018; McGill and Dombrowski 2019; Ortiz 2015;
Wasserman 2019). Carroll’s 3S theory, as well as CHC theory, has had a major influence
on psychometric theories of intelligence and intelligence test development, research, and
interpretation practices.

The importance of Carroll’s 3S theory was recognized immediately by his intelligence
research and theory peers (McGrew 2005). Horn characterized Carroll’s work as a “tour
de force summary and integration“ comparable to Mendeleev’s periodic table of elements
in chemistry (Horn 1998, p. 58). Jensen (2004) called it a magnum opus comparable to
Hans von Bülow’s exclamation on his first reading of Wagner’s Die Meistersinger, “it’s
impossible, but there it is!” (p. 4). Lubinski (2004) described the empirical foundation
of Carroll’s work as “destined to be a classic” (p. 410). Later, in Carroll’s APA obituary,
Lubinski (2004) described it as “among a handful of the best treatments ever published on
individual differences in cognitive abilities. It is certainly the most definitive treatment of
their nature and organization” (p. 44).

Two recent publications illustrate the enduring theoretical impact of Carroll’s (1993)
work.1 Schneider and McGrew (2018) recently proposed incremental revisions to CHC
theory from nascent signals present in Carroll’s book. These included (1) the division of
Glr into Gl and Gr domains, (2) the addition of a broad general emotional intelligence
(Gei) domain, (3) the bifurcation of perceptual speed (Gs-P) into two perceptual speed
sub-factors (P-Search/Scanning and P-Comparison/Pattern Recognition), and (4) the need
to subcategorize Gv as per large-scale navigation and small-scale spatial abilities.2 More
recently, Whilhelm and Kyllonen (2021) articulated how the strengths and limitations of
Carroll’s work can serve as a springboard for new research focusing on such topics as
(1) the central importance of working memory for Gf and recognizing Gf content facets,
(2) reconceptualizing Gc as more akin to the Cattell-like notion of a general capacity (gc)
that includes, aside from verbal abilities, other forms of acquired knowledge, achievement,
and domain-specific expertise, (3) better understanding the complex nature, measurement,
and scaling of speed factors (Gs, Gt, and Gps), (4) the relation between idea production
(Gr) and the emerging societal need to better understand and foster creativity, and (5) the
need to incorporate social, emotional, and collaborative intelligence constructs in a more
comprehensive intelligence framework. Whilhelm and Kyllonen (2021) proposed five
research strategies for moving the study of intelligence forward, including the integration
of cognitive and non-cognitive traits (e.g., motivation, interests, and personality) consistent
with contemporary notions of Snow’s aptitude trait complexes (Ackerman 1996, 2018;
Corno et al. 2002; McGrew 2022).

Carroll’s 3S theory stands on its own merits in the space occupied by intelligence
scholars. However, it could be argued that his 3S theory’s impact on the practice of
intelligence test development and interpretation is equal to, or greater than, his impact on
theories of intelligence. Why?
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Using Rappaport et al.’s (1945–1946) Diagnostic Psychological Testing as an approximate
start date, the clinical interpretation of intelligence tests has been characterized as progress-
ing through four overlapping “waves” of interpretation practices (Kamphaus et al. 2012)
spanning 40 to 50 years. These overlapping waves produced both missteps and incre-
mental progress, reflecting a combination of ad hoc psychometric considerations and the
retrofitting of older theories of cognitive abilities to intelligence test data (Schneider and
Flanagan 2015). Kaufman’s Intelligent Testing with the WISC-R (Kaufman 1979) was prescient
in articulating the fourth wave (circa 1980′s to present)—the application of emerging the-
ories of intelligence to test interpretation. Luria’s neuropsychological theory influenced
both the interpretation of existing tests and the development of new Luria-based cognitive
tests (Kaufman Assessment Battery for Children, Kaufman and Kaufman (1983); Cognitive
Assessment System, Naglieri and Das (1997)). Early psychometric-based theories (e.g., Spear-
man’s g, Cattell’s gf-gc; and Thurstone’s primary mental abilities) sowed the seeds for
the primarily factor-analytic-based Cattell–Horn Gf-Gc and Carroll 3S theories. These
seeds quickly bloomed when the practical import of Carroll’s work, coupled with Carroll’s
(1993) recognition of Cattell and Horn’s Gf-Gc theory, was synthesized under the umbrella
of CHC theory. The appearance of Carroll’s work signaled the end of the lengthy quest
for a defensible and empirically based theoretical framework to guide intelligence test
development and interpretation.

The emergence of CHC theory produced multiple positive outcomes. The existing
intelligence theory–research–practice testing gap quickly narrowed (Flanagan et al. 2000;
McGrew and Flanagan 1998; McGrew 2005; Ortiz 2015). CHC theory became the corner-
stone for the development and interpretation of most major individually administered
intelligence tests (Benson et al. 2018; Caemmerer et al. 2020; Daniel 1997; Flanagan et al. 2013;
Kaufman 2009; Keith and Reynolds 2010; McGrew and Flanagan 1998; Wasserman 2019).
CHC theory also influenced research in other fields of psychology (e.g., neuropsychology;
brain network research; behavioral genetics; e.g., see Barbey 2018; Jewsbury et al. 2017;
Procopio et al. 2022) and other non-psychology fields (e.g., the military; Atkins intellectual
disability death penalty cases; and computer science education and the internet; Schneider
and McGrew 2018).

2.1. Carroll’s 3S Theory’s Connection with CHC Theory: An Arranged Marriage of Convenience

The rapid infusion of Carroll’s work in the intelligence testing literature was, in large
part, initiated and accelerated by regular interactions between the theorists Carroll and
Horn and the Woodcock–Johnson—Revised (WJ-R; Woodcock and Johnson 1989) and
Woodcock–Johnson III (WJ III; Woodcock et al. 2001) test author teams (Benson et al.
2018; McGrew 2005; McGill and Dombrowski 2019; Wasserman 2019). These interactions
stemmed from the documented serendipitous March 1986 Dallas, Texas, “meeting of the
minds” (John Carroll, John Horn, and Richard Woodcock) that gave eventual birth to the
first individually administered cognitive test battery (WJ-R) organized as per the broad
strokes of the Cattell–Horn Extended Gf-Gc theory of intelligence (McGrew 2005; Kaufman
2009; Ortiz 2015). Seven years later, Carroll (1993) concluded that the Cattell–Horn Gf-Gc
theory “appears to offer the most well-founded and reasonable approach to an acceptable
theory of the structure of cognitive abilities” (p. 62). Carroll’s endorsement of the Cattell–
Horn Gf-Gc theory was viewed as a signal in the field of intelligence testing that his 3S
model was, in terms of broad ability dimensions, like Cattell and Horn’s Gf-Gc framework.
Carroll’s work provided an authoritative independent stamp of approval, cementing the
birth of what is now known as CHC theory.

In 1999, Woodcock brokered the CHC umbrella term with Horn and Carroll for practi-
cal reasons (McGrew 2005)—to facilitate internal and external communication regarding
the theoretical model of cognitive abilities underlying the then-overlapping test develop-
ment activities (and some overlapping consultants, test authors, and test publisher project
directors; John Horn, Jack Carroll, Richard Woodcock, Gale Roid, Kevin McGrew, Fred
Schrank, and John Wasserman) of the Woodcock–Johnson III and the Stanford Binet–Fifth



J. Intell. 2023, 11, 32 4 of 30

Edition by Riverside Publishing (Kaufman 2009; McGrew 2005; Wasserman 2019). There
was no formal proclamation in a psychology journal where Cattell, Horn, and Carroll
blessed the pragmatic union of their respective theories. In some respects, this union was
more akin to an arranged marriage.

Several visible activities of the WJ III authors contributed to the establishment of
CHC theory in the intelligence literature (McGill and Dombrowski 2019; Wasserman 2019).
Woodcock’s (1990) joint CFA of the WJ-R with five other intelligence batteries, as per the
Cattell–Horn Gf-Gc theory, raised awareness of the Cattell–Horn broad abilities in the
intelligence testing community. Woodcock suggested the concept of “crossing batteries”
to measure all major broad cognitive abilities. Subsequently, McGrew (1997) proffered an
integrated Cattell–Horn–Carroll framework for test interpretation. According to McGrew
(2005), the first formally published definition of CHC theory was presented in the WJ
III technical manual (McGrew and Woodcock 2001), and CHC was featured prominently
in the WJ III test manuals (McGill and Dombrowski 2019). McGrew was also involved
in the formative stages of the development of the CHC cross-battery assessment method
(Flanagan and McGrew 1997; McGrew and Flanagan 1998; Flanagan et al. 2000) popularized
by Flanagan and colleagues (Flanagan et al. 2013). Finally, it may have been McGrew’s (2009)
editorial in Intelligence (“CHC theory and the human cognitive abilities project: Standing
on the shoulders of the giants of psychometric intelligence research”) that was in large
part responsible for the accelerated infusion of CHC theory into the intelligence literature.
In McGill and Dombrowski’s (2019) description of the evolution of CHC theory, they
referenced a bibliometrics analysis of the journal Intelligence that found McGrew’s (2009)
editorial to be the most cited article in the journal over an eight-year period (2008–2015).
The CHC’s foothold in the intelligence literature was further consolidated by a series of
CHC theory book chapters (McGrew 2005; Schneider and McGrew 2012, 2018).

2.2. Criticisms of Carroll’s 3S and CHC Theory

As with any paradigm-shifting event in science, Carroll’s 3S theory (and affiliated
CHC theory) has not escaped criticism. Consistent with Carroll’s reputation as a scholar
with unquestionable scientific integrity,3 Carroll, after acknowledging his gratification with
the largely effusive initial reviews of his work by his peers, expressed disappointment that
the largely positive reviews “didn’t tell me what I wanted to know: What was wrong with
my book and its ideas, at least what might be controversial about it, for surely it dealt
with a field that has abounded in controversy” (Carroll 1998, p. 6). Carroll, being Carroll,
proceeded to publish a self-critique of his work (Carroll 1998).

The formal critiques Carroll so desired did not materialize until approximately 20 years
after his book, approximately 10 years after his passing. It is beyond the scope of this pa-
per to review the details of the published critiques of Carroll’s work or CHC theory (see
Benson et al. 2018; McGill and Dombrowski 2019; Wasserman 2019; Whilhelm and Kyllo-
nen 2021). One salient criticism of CHC theory (and, by association, Carroll’s 3S theory)
is relevant to the current historical narrative—the “circular” or “enmeshed” relationship
between CHC theory and the WJ-R, WJ III, and WJ IV test authors (McGill and Dombrowski
2019; Wasserman 2019). This criticism states that the Cattell–Horn Gf-Gc or CHC theories
were used to design the tests and organizational structures of the WJ-R, WJ III, and WJ
IV, and the norm data from these test batteries were then used to verify the validity of
the theoretical models. I recognize and acknowledge the gist of these criticisms during
the formative years of CHC intelligence research. However, this criticism is now moot.
CHC theory is, today, the joint property of the scientific community of intelligence scholars
and those in the applied field of intelligence testing—a unique informal research–practice
union. Furthermore, McGill and Dombrowski (2019) acknowledged that “to be fair, there
have been a number of CFA studies in which a CHC structure has been found to fit various
datasets well (see Schneider and McGrew 2012)” (p. 223; also see McGrew (2005) and
Schneider and McGrew (2018)). More recently, Caemmerer et al. (2020), using a sophisti-
cated missing data confirmatory factor analysis method of subtests from the norming or
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linking of samples from six different intelligence test batteries (n = 3900+), found support
for the validity of the CHC theory and the CHC classifications for all but 1 of the 66 tests.

2.3. A Recommended Name Change: CHC Theories—Not CHC Theory

The origin and evolution of the term CHC theory have been murky (McGill and
Dombrowski 2019). A salient problem is the name itself—CHC theory. As explained above,
CHC theory originated from the pragmatic need to reference the overarching similarities of
the Cattell–Horn Gf-Gc and Carroll 3S theories. It was never intended to convey that Cattell,
Horn, and Carroll had reached a formal rapprochement regarding all matters concerning
the structure of human intelligence. Horn and Carroll had a long-standing difference of
opinion regarding the nature and essence of psychometric g, which is defined, in this paper,
as the statistical extraction of a latent factor (via factor analysis) that accounts for the largest
single source of common variance in a collection of cognitive abilities tests. In contrast,
theoretical g refers to the yet-identified underlying biological brain-based mechanism(s) that
produces psychometric g. In McGrew’s (2009) Intelligence CHC theory article, it was stated
“there are remarkable similarities between the Carroll 3S and Cattell–Horn Gf–Gc theories,
so much so that a single umbrella term (viz., the Cattell–Horn–Carroll (CHC) theory of
intelligence) was proposed to reflect the broad stroke communality of these two most prominent
theoretical models” (p. 2; emphasis added). Additionally, four fundamental differences
between the Cattell–Horn and Carroll models were elucidated. It appears that McGrew
(2009) failed to make it sufficiently explicit that the original intent of the CHC term was
to function as an informal broad umbrella term—not to indicate a strong consensus among
the three theorists under the common label. The use of the term CHC theory was embraced
with considerable enthusiasm in the intelligence theory and testing literature (Wasserman
2019), so much so that the “big tent” ecumenical meaning of the original term was lost. The
ability of anyone associated with the origin of CHC theory to control the narrative of the
CHC label quickly vanished. The CHC theory train had left the station. In the process, the
primary differences between Carroll’s 3S conceptualization of the structure of cognitive
abilities, when contrasted with Cattell and Horn’s unique contributions, were obscured. It
is time to clarify the record.

Prior attempts to correct this misunderstanding were made in two CHC theory update
chapters (Schneider and McGrew 2012, 2018). Schneider and McGrew (2018) stated that
“the Cattell–Horn–Carroll theory of cognitive abilities (CHC theory) is a comprehensive
taxonomy of abilities embedded in multiple over-lapping theories . . . It has a “big-tent” mindset,
tolerating ambiguities and disagreements wherever there are reasonable grounds for disagreement
(e.g., the nature of general intelligence) . . . Our hope for CHC theory is that it provides
a common framework and nomenclature for intelligence researchers to communicate their
findings without getting bogged down in endless debates about whose version of this or that
construct is better” (p. 73; emphasis added).

A primary reason for this clarification is to fulfill my personal obligation to Carroll
(from the May 2003 week-long discussions when I lived and worked with Carroll during
his retirement while he lived in the home of his daughter and her family in Fairbanks,
Alaska). Carroll acknowledged his involvement in the origin of the informal CHC umbrella
term agreement (Carroll 2003), but was vexed that the term CHC theory had been so
rapidly infused into the literature and, more importantly, incorrectly implied that he,
Cattell, and Horn had agreed to a formal union of theories. I agreed to help clarify
his position in a planned coauthored revision of Carroll’s 3S model chapter originally
published in Flanagan et al. (1997). His passing just over a month later ended this plan.
Furthermore, when researching the history of the origin of the CHC label for this article,
after communicating with multiple individuals who were present at the time, I learned,
for the first time, that Horn had also expressed a degree of exasperation with the message
conveyed by the singular CHC term as soon as a few months after Woodcock brokered the
term. Having worked with (and being informally mentored by) both Carroll and Horn
during the WJ-R and WJ III revisions and related cognitive ability projects for nearly 17
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to 20 years, respectively, there is a clear need to honor their memories by clarifying the
meaning of CHC theory. . . to CHC theories.

The most salient difference between the three related CHC theories is the presence (or
absence) of a higher-order general intelligence factor or ability (g). Horn was a staunch
anti-g proponent who believed that psychometric g was nothing more than an emergent
property statistical abstraction (McGrew et al. 2023)—it did not represent a true ability or
mechanism in the human brain (Horn 1998; Horn and Noll 1997; McArdle 2007; McArdle
and Hofer 2014; Ortiz 2015). Conversely, Carroll was a staunch proponent of psychometric
g as possibly representing some form of biological substrate present in individuals that
influences the speed and efficiency of information processing (Carroll 1991, 1993, 1996,
2003). However, often ignored in publications citing Carroll’s strong psychometric g
position is Carroll’s admission that psychometric g might not represent a real theoretical
or psychological construct. Examples include the following Carroll statements in three
publications after his seminal work “the question remains whether a unitary g exists, or
whether a factorially produced g is merely a mathematical artifact” (Carroll 1998, p. 13;
emphasis added); “What has not been adequately demonstrated and proven at this time is
that g is a ‘true ability” independent of more specific cognitive abilities defined by various
types of psychological tests and observations” (Carroll 1997, p. 151, emphasis added); the
“continued psychological and even philosophical examination of the nature of factor g is
a must” (Carroll 2003, p. 19). These statements suggest that Carroll was aware, but did
not make it sufficiently clear, that much of the intelligence structural analyses research
literature suffers from the problem of conflating psychometric and theoretical g (Fried 2020;
McGrew et al. 2023).

Occupying a more middle ground is Cattell, who eschewed his mentor’s (Spearman)
singular g in favor of multiple general capacities. As per Wasserman’s (2019) summary of
Cattell’s Triadic theory, “Cattell believed that there are four general capacities (fluid reason-
ing, memory, retrieval fluency, and speed); a handful of provincial powers corresponding
to sensory and motor domains (e.g., visual, auditory, olfactory, gustatory, tactile, and cere-
bellar); and a large number of environmentally developed capacities he called agencies
(e.g., mechanical ability, literacy, numeracy, and so forth). One developed agency, crystal-
lized intelligence, is so broad in scope that it behaves like a general capacity (Cattell 1987)”
(p. 253). Cattell’s general capacities, which replace Carroll’s dominant psychometric g
factor, are those abilities (fluid intelligence—gf; crystallized intelligence—gc, memory—gm,
retrieval fluency—gr, and speed—gs)4 involved across most all cognitive tasks and reflect
limiting properties, parameters, or constraints of the action of the whole brain (Cattell 1987).

Also missing from the CHC theory literature is an accurate attribution of the origins
of the three-stratum hierarchical model of cognitive abilities. Carroll did not originate
the term stratum and attributed the distinction between the order and stratum of factors
to Cattell (1971). Vernon’s (1950) hierarchical group factor theory, although not using the
term stratum, differentiated cognitive ability factors as per a three-level hierarchy with g
at the apex, two major group factors (verbal–numerical–educational, v:ed; and practical–
mechanical–spatial–physical, k:m), and, subsequently, a variety of minor group factors
(e.g., number, verbal, spatial, mechanical information, and manual). It may have been
Alexander (1934) who, although factoring a more limited array of ability measures, first
articulated a three-level hierarchical model (general intelligence (g); practical (p) and verbal
(v); mechanical (m), number (n), and reasoning (R)) (Vernon 1950). Alexander’s (1934) work
was prescient of the distinguishing of factors as per breadth (i.e., stratum), by which “we
mean the number of life situations in which a factor plays some part (whether more or less
important)” (p. 82).

There is a long-overdue need to correct the misunderstanding surrounding the mean-
ing of the CHC theory label. Analogous to how the term “information processing” theories
or models serves as a broad umbrella for similar or competing theories, CHC represents
several related (yet different) theoretical structural models of cognitive abilities (McGrew
2005). It is recommended that CHC theory henceforth be referred to as CHC theories. In
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addition, Cattell’s notion of multiple general capacities should be revisited and empirically
compared with the Carroll (there is g) and Horn (there is no g) structures. CHC theories
clearly build on the shoulders of multiple psychometric intelligence giants (McGrew 2009).

2.4. Summary Comments

In summary, the origin and evolution of CHC theory (and Carroll’s 3S theory’s role
in the theory) as described herein and elsewhere has been a non-linear, messy process.
This is often the nature of cumulative science, which is replete with unanswered questions,
critiques, anomalies, serendipitous events, steps forward and backward, misunderstand-
ings, and unintended consequences based on noble scientific intentions. I concur with the
apt description of Wasserman (2019) that “contrary to idealistic expectations about how
science advances, there may be no defining moment when CHC is considered fully and
consensually confirmed or disconfirmed. CHC itself will be amended, fixed and patched
whenever possible. . . For better or worse, this seems to be how science works” (p. 262).
Although Carroll and Horn had become vexed by the use of the singular CHC label, I agree
with Ortiz (2015) that “Cattell, Horn, and Carroll would all likely take heart in knowing that
their burning interest in furthering an understanding of intelligence and human cognitive
abilities has been passed on intact to the current generation of psychological scientists. CHC
theory has grown up, and it would be safe to assume that Cattell, Horn, and Carroll would
likely be very proud to know that their goals, their ideas, and their passion are still alive
and kicking in CHC theory to the present day” (p. 226). Notwithstanding, it is henceforth
recommended that the three related theories of Cattell, Horn, and Carroll be reframed as a
family of obliquely correlated CHC theories, reflecting their strong similarities, as well as
fundamental differences.

3. A Replication and Extension of Carroll’s (2003) Comparison of the Three Primary
Structural Models of Cognitive Abilities
3.1. Carroll’s (2003) Analyses That Supported His Standard Multifactorial 3S View of Intelligence

Carroll’s (2003) last published factor analyses were of the 16- and 29-test kindergarten-
through-adult age-range test correlation matrices reported in the WJ-R technical manual
(McGrew et al. 1991). He completed these analyses with the latest version of the EFA-
Schmid/Leiman software (EFA-SL) used in the analyses presented in his seminal work.
Carroll used the EFA-SL solutions as inputs for the specification and evaluation of bifactor
CFA (LISREL) models to estimate and evaluate the final orthogonal factor loadings. The
purpose of his 2003 analyses was to compare and evaluate three different views of the
structure of cognitive abilities. Carroll described the three models as the (1) standard
multifactorial view, which is Carroll’s hierarchical g 3S model; (2) limited structural analysis
view, typically associated with Gustafsson and colleagues that includes a higher-order g-
factor that is either highly correlated or isomorphic with the broad Gf factor; and (3) second-
stratum multiplicity view, the model most often associated with Horn that does not include
a higher-order g-factor and instead posits correlated broad factors. These three views are
hereafter referred to as the Carroll 3S, Gustafsson Gf = g, and Horn no-g models, respectively.

In his WJ-R analyses, aside from a large g-factor, Carroll identified eight (16-test analy-
ses) and nine (29-test analyses) factors he labeled as per the broad CHC ability terminology
used (at the time) by the WJ-R author team. His analyses supported a higher-order g-factor
and eight broad factors (viz., Gl, Gwm, Gs, Ga, Gv, Gc, Gf, and Gq).5 A tentative Language
(Lang) factor in the 29-test analyses was identified and was characterized as needing further
research. Carroll (2003) concluded that his two analyses “confirm the classical, standard
multifactorial model of the higher-stratum structure [Carroll 3S] . . . [and] tend to discredit
the limited structural analysis view [Gustafsson Gf = g] and the second-stratum multiplicity
view [Horn no-g]” (p. 17). A close reading finds that Carroll did not completely reject
the Gustafsson Gf = g model as “the low Gf factor loadings most likely indicate that the
factor Gf is inherently difficult to measure reliably independently of its dependence on
g (as indicated by the high g loadings for these tests). This may account for the finding
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by Gustafsson . . . that it is often difficult to distinguish Gf from g” (Carroll 2003, p. 14).
Carroll (2003) was dismissive of the Horn no-g model when he concluded that “it would be
difficult to argue that the g factors yielded by the two analyses are different, even though
they involve different second-order factors . . . I cannot regard Horn’s comment as a sound
basis for denying the existence of a factor g, yet he succeeded in persuading himself and
many others to do exactly this for an extended period of years” (p. 19).

3.2. Confirmation of Carroll’s 3S Multifactorial View with 46 WJ III Tests

One central task during the May 2003 work week with Carroll was the collaborative
completion of a Carroll EFA-SL factor analysis of the ages 14–19 correlation matrix of 46 WJ
III tests (n = 1618) reported in the WJ III technical manual (McGrew and Woodcock 2001).
The ages 14–19 sample was a subsample of the complete WJ-III norm sample, which was
a nationally representative sample of 8818 participants from age 2 through 90 plus. The
WJ-III Technical Manual reports that the norm sample was matched to the 2000 U.S. Census
for the demographic variables of geographic region, community size, sex, race, educational
level, and occupation. Detailed demographic characteristics are provided in the WJ-III
Technical Manual. Descriptions of the WJ III tests are presented in Supplementary Material
Section S2.

The procedures described in Carroll’s 1993 methodology chapter (Chapter 3) guided
the analysis. The best available existing copy of the final model output (original date
05-29-03), as well as a more readable, reorganized version of the output, are presented in
Supplementary Materials Section S3. The final solution identified 10 interpretable factors—
9 first-order factors and 1 large general intelligence (g) factor. Based only on the findings of
the EFA-SL analysis of the 46 WJ III tests, Carroll believed that the analyses supported his
conclusion (Carroll 2003) that the Carroll 3S model, when compared with the Gustafsson
Gf = g and Horn no-g models, was more valid.

With the unfortunate passing of Carroll on 1 July 2003, a little over a month after the
McGrew–Carroll EFA-SL analysis was completed, the second planned step (bifactor CFA
using the EFA-SL model as a starting point) was never completed. This delinquent bifactor
CFA was recently completed (summer of 2022) for the current paper. The analyses and
results are reported next.

The salient WJ III test loadings on the 10 EFA-SL factors served as the starting point
for the specification of a bifactor CFA model. Details regarding the decisions made during
the CFA analyses are included in Supplementary Materials Section S4. The statistical
analysis was completed with the open-source JASP (v 0.16.3; JASP Team 2022) factor
analysis software program module supported by the University of Amsterdam (https:
//jasp-stats.org/ accessed on 4 October 2021). Although the results presented can be
interpreted to reflect on the structural validity of the WJ III test battery, in this paper, the
interpretations are restricted to the theoretical questions investigated by Carroll (1993, 2003).
Furthermore, comparisons of the current McGrew–Carroll 2003/2022 WJ III 46-test results
(hereafter referred to as the MC analysis) are only made with Carroll’s 29-test WJ-R analysis
results (hereafter referred to as the Carroll analysis), not with the 16-test analysis. Although
my current and evolving views regarding psychometric and theoretical g are not 100%
consistent with Carroll’s (see McGrew et al. 2023), to the best of my ability, I present what
I believe would be interpretations consistent with Carroll’s thinking of the MC analysis
results. The final bifactor CFA model results are presented in Table 1.

https://jasp-stats.org/
https://jasp-stats.org/


J. Intell. 2023, 11, 32 9 of 30

Table 1. Bifactor CFA of WJ III 46 Tests Based on Carroll Exploratory Factor Analysis. Note. TM
CHC = CHC classifications from WJ III technical manual. Italic font indicates different CHC factor
classification based on the analysis. The 1st-order factor names are as per Schneider and McGrew
(2018). O1 and O2 designate 1st- and 2nd-order factors as per Carroll’s EFA-SL software (see
Supplementary Materials Section S3. Bold designates test g loadings of .70 or above. 1 Original WJ
III Glr classification changed to Gl or Gr and Gsm changed to Gwm as per Schneider and McGrew
(2018). 2 Gsc = processing speed–cognitive; Gsa = processing speed–achievement. 3 Number Series
and Number Matrices subtests were combined as a single Numerical Reasoning test in the WJ III.

WJ III Test
Name

Factors

TM
CHC

O2
g

O1
Grw

O1
Gc

O1
Gl 1

O1
Gsc 2

O1
Gf

O1
Gsa 2

O1
Gwm 1

O1
Gq

O1
Gv

O1
Ga

Word Attack Grw 0.62 0.58

Spelling of Sounds Grw 0.70 0.46 0.30

Spelling Grw 0.65 0.32

Letter–Word Identification Grw 0.74 0.32

Editing Grw 0.70 0.22

Writing Samples Grw 0.67 0.14

Picture Vocabulary Gc 0.65 0.65

Verbal Comprehension Gc 0.86 0.45

General Information Gc 0.82 0.34

Academic Knowledge Gc 0.83 0.26

Reading Vocabulary Grw 0.81 0.20

Story Recall Gl 0.82 0.14

Oral Comprehension Gc 0.66 0.14

Passage Comprehension Grw 0.68 0.08

Memory for Names Gl 0.57 0.48

Visual–Auditory Learning Gl 0.70 0.44

Picture Recognition Gv 0.44 0.23

Visual Closure Gv 0.25 0.16

Pair Cancellation Gs 0.42 0.79

Visual Matching Gs 0.48 0.68

Decision Speed Gs 0.39 0.64

Cross Out Gs 0.51 0.57

Retrieval Fluency Gr 0.54 0.25

Concept Formation Gf 0.73 0.54

Understanding Directions Gwm 0.81 0.22 0.40

Reading Fluency Grw 0.66 0.38 0.47

Math Fluency Gq 0.50 0.46 0.37 0.33

Rapid Picture Naming Gr 0.43 0.43 0.25

Writing Fluency Grw 0.58 0.27 0.25

Memory for Words Gwm 0.57 0.50

Numbers Reversed Gwm 0.58 0.40

Memory for Sentences Gwm 0.66 0.14 0.37

Auditory Working Memory Gwm 0.70 0.37

Calculation Gq 0.59 0.42

Number Series 3 Gf 0.73 0.39

Number Matrices 3 Gf 0.72 0.38

Applied Problems Gq 0.76 0.34

Analysis-Synthesis Gf 0.73 0.18 0.20

Spatial Relations Gv 0.50 0.52

Block Rotation Gv 0.49 0.39

Planning Gv 0.38 0.29

Sound Blending Ga 0.56 0.58

Auditory Attention Ga 0.42 0.23 0.41

Incomplete Words Ga 0.48 0.34

Sound Patterns–Voice Ga 0.49 0.20

Sound Awareness Ga 0.83
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Although the Carroll and MC analyses differ in the number of test indicators of broad
abilities, in general, the 11 MC analysis factors (1 g and 10 broad) presented in Table 1 are
consistent with the Carroll analyses factors (1 g and 9 broad; see Carroll’s 2003 chapter
Table 1.5) and thus, as explained below, support his 2003 conclusions regarding the validity
of his 3S model.

Both the MC and Carroll analyses produced prominent g factors. The MC analysis g
factor (O2-g in Table 1) is a large general factor with factor loadings ranging from .25 to .86,
while the Carroll analysis g factor had loadings ranging from .28 to .78. Approximately 76%
(n = 35 of 46) of the MC analysis g factor loadings were greater than or equal to .50, while
62% (n = 18 of 29) of the Carroll analysis g factor loadings met the same criterion. The MC
analysis g factor had a larger percentage of tests with high g loadings. The MC analyses
provide strong support for a dominant g factor as per Carroll’s 2003 3S conceptualization
of intelligence. Interestingly, in both analyses, the strongest loading tests on the large g
factor were primarily (or were mixed) tests of acquired knowledge (Gc, Gq, and Grw; like
Cattell’s gc), Gf (especially in the MC analysis, where four Gf tests had g loadings ≥ .70+),
and, to a lesser extent (in the MC analysis), tests of Gwm or Gl.

Eight of the MC analysis factors appear to be broader (defined by a larger set of tests
representing a more diverse range of narrow abilities) analogs of the same broad factors
in the Carroll analyses (viz., Gc/Gc, Gl/Glr, Gsc/Gs, Gf/Gf, Gsm/Gwm, Gq/Gq, Gv/Gv,
and Ga/Ga). For example, as reflected in Table 1, the MC analysis Gc factor was defined by
the Picture Vocabulary (.65), Verbal Comprehension (.45), Oral Comprehension (.14; named
Listening Comprehension (LISCM)6 in the WJ-R Carroll analysis = .42), and Academic
Knowledge tests (.26, which is the combination of the similar Science (SCIENC = .49),
Social Studies (SOCSTU = .49), and Humanities (HUMANI = .45) tests in the Carroll
analysis). The MC Gc factor also included Gc-consistent salient loadings (for tests absent
from the Carroll analysis) that were clear indicators of Gc (General Information = .34;
Reading Vocabulary = .20), and with lower, yet still Gc-consistent, loadings for Story Recall
(.14), Memory for Sentences (.14) and Passage Comprehension (.08). Additionally, Picture
Vocabulary (PICVOC = .53), Oral Vocabulary (ORALVO = .37), and Verbal Analogies
(VBLANL = .16) all had salient loadings on the Carroll analysis Gc factor. The composition
and test factor loadings for the respective Gsm/Gwm and Ga/Ga factors in the two analyses
clearly represent similar broad cognitive dimensions across both analyses and, thus, do not
warrant detailed discussion.

MC analysis factors that, upon first inspection, suggest possible broad factors that
differ from the Carroll analyses (Gl/Glr; Gv/Gv) are interpreted as similar when the
specific tests loading on the factors are reviewed. For example, in both the MC and Carroll
analyses, the respective Gl and Glr factors both had relatively strong loadings for the
Memory for Names (MC analysis = .48; Carroll analysis MEMNAM = .70) and Visual–
Auditory Learning (MC analysis = .44; VISAUD = .34) tests. The Carroll analysis Glr factor
also had, as expected, relatively strong loadings for the delayed recall versions of both tests
(Memory for Names–Delayed Recall, MNADR = .73; Visual–Auditory Learning–Delayed
Recall, VSAUDR = .32), tests which were not included in the MC analyses. Instead, in
the MC analyses, relatively weaker Gl loadings were observed for the Picture Recognition
(.23) and Visual Closure (.16) tests, two tests that loaded on the Carroll analysis Gv factor
(Picture Recognition, PICREC = .26; Visual Closure, VISCLO = .47). Why the difference?

One hypothesis is that the abilities measured by Picture Recognition (Gv-MV, visual
memory) and Visual Closure (Gv-CS, closure speed) are considered minor Gv abilities
(Schneider and McGrew 2018). In the MC analysis, there were two stronger indicators
(Spatial Relations and Block Rotation) of one of the major narrow abilities of Gv (visual-
ization) (McGrew et al. 2014; McGrew et al. 2023; Schneider and McGrew 2012, 2018), as
well as a test (Planning) hypothesized to measure the Gv narrow ability of Spatial Scanning
(Gv-SS).7 The MC analysis Gv factor may be a broader and more robust Gv factor than the
Carroll analysis Gv factor. As a result, two of the Carroll Gv indicators (PICREC, VISCLO)
had weak loadings on Gl in the MC analysis (Picture Recognition = .23, Visual Closure
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= .16). A second hypothesis, which would better explain the Carroll Glr factor, draws
from Milner and Goodale’s Two Visual Systems (TVS) model (Goodale and Milner 2018;
Milner and Goodale 2006) that specifies that visual processing abilities serve two different
functional roles localized in two different clusters in the ventral and dorsal pathways or
streams of the brain—visual recognition routines (i.e., vision for recognition) and real-time
visual guidance (i.e., vision for action). The Picture Recognition and Visual Closure tests
are non-spatial visual stimulus-based tests (i.e., vision for recognition), as are the other tests
(viz., VISAUD, MEMNAM, VSAUDR, and MDADR) comprising the Carroll analysis Glr
factor. In contrast, the MC analysis Gv factor is defined primarily by the clearly spatial
(i.e., vision for action) Spatial Relations and Block Rotation tests.

On first inspection, four of the MC analysis factors differ from the similar factors in
the Carroll analyses. However, these four MC factors are interpretable as consistent with
the Carroll analysis findings. First, the tentative LANG (language) factor Carroll (2003)
recommended as needing further investigation is most likely an under-identified version
of the broader Grw factor in the MC analysis. In the Carroll analyses, this was a poorly
defined factor that included relatively weak loadings for a test of word analysis reading
skills (Grw, Word Attack; WRDATCK = .20) and a Gc test of general humanities information
(Humanities, HUMANI = .11), and a strong loading for a Grw test of writing fluency or
speed (Writing Fluency, WRIFLU = .68). In addition to the Word Attack (.58) test that
was also in the Carroll analysis (WDATCK = .20), the MC analyses included additional
Grw tests of spelling (Spelling of Sounds = .46; Spelling = .32), reading (Letter–Word
Identification = .32), and writing (Editing = .22 and Writing Samples = .14). Thus, the weak
language factor in the Carroll analysis is most likely an under-identified version of the
robust Grw factor in the MC analysis.

Second, the Carroll analysis included a single Gs factor, while the MC analyses identi-
fied separate cognitive (Gsc) and academic (Gsa) processing speed factors. The Gsc factor in
the MC analyses included salient loadings for the same Gs tests as in the Carroll analysis (Vi-
sual Matching = .68; VISMAT = .71; Cross Out = .57; CRSOUT = .54; Writing Fluency = .27;
and WRIFLU = .29) and additional speeded or fluency tests not included in the Carroll anal-
yses (Pair Cancellation = .79; Decision Speed = .64; Rapid Picture Naming = .43; Retrieval
Fluency = .25; Reading Fluency = .38; Math Fluency = .46; and Writing Fluency = .27).
The separate Gsa factor in the MC analyses was defined by three academic fluency tests
(Reading Fluency = .47; Math Fluency = .37; and Writing Fluency = .25) and a test now in-
terpreted as an indicator of Gr (naming facility narrow ability; Rapid Picture Naming = .25)
(McGrew et al. 2014; Schneider and McGrew 2018). The possibility of separate cognitive
and academic Gs factors is consistent with the hierarchical speed taxonomy first proposed
by McGrew and Evans (2004) with a Cattell-like gs (general speed) construct at the apex.
Schneider and McGrew (2018) refined the hypothesized gs hierarchy and suggested that
CHC narrow speed and fluency abilities may be ordered on a continuum by their degree of
cognitive complexity, as well as the possibility that cognitive and academic speed factors
may represent different content facets of Gs. However, it should be noted that, in the sup-
plementary hierarchical g and Horn no-g model analyses of these data (see Supplementary
Materials Section S5, Tables S4 and S6; not interpreted in this paper, save for select salient
findings bearing on Carroll’s 2003 primary research questions), the separate Gsc and Gsa
factors were untenable (they displayed a negative latent factor correlation).8 These two
factors were merged as a single Gs factor in the supplementary hierarchical g and Horn
no-g analyses, and in the CHC PNA higher-stratum design analysis presented later in
this paper.

The Gf factors in the two analyses are similar. In the Carroll analysis, this factor
was defined by a strong loading for the Concept Formation test (CNCPTF = .54), a
clear measure of inductive reasoning, the primary indicator of Gf and psychometric g
(Klauer et al. 2002; Schneider and McGrew 2018). This was followed by a lower, yet salient,
loading for the deductive (general sequential reasoning narrow ability) Analysis–Synthesis
test (ANLSYN = .21) and a weak loading for a language-based Gf/Gc analogies test (Verbal
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Analogies, VBLANL = .05). In the MC analysis, Concept Formation was also the highest-
loading test (.54) and Analysis–Synthesis had a lower salient loading (.18), but also had a
cross-loading on the Gq factor (.20). The MC analysis Gq factor differed from the Gq factor
in the Carroll analysis due to the significant Gq loadings for two quantitative reasoning
(Gf-RQ) tests (Number Series = .39; Number Matrices = .38) not present in the Carroll anal-
ysis. As the Analysis–Synthesis test is designed to represent an underlying miniature math
logic system, its Gf and Gq cross-loadings in the MC analyses make sense and support the
MC Gf factor interpretation. Unexpected was the Understanding Directions test’s salient
loading on the MC Gf factor (.40), which needs further investigation. Given that this test is
a strong language-based measure of Gwm and attentional control (Schneider 2016), this
finding may reflect the robust Gwm→Gf research finding (Whilhelm and Kyllonen 2021).

Finally, the Gustafsson . . . Gf = g structural view of intelligence was not supported
by the supplementary hierarchical g and Horn no-g analyses reported in Supplementary
Materials Section S5. In the hierarchical g model (Table S4), the Gf factor did not have a high
g factor loading approaching unity. Instead, the Gf factor loading on g (.83) was similar to
that for Gl (.83) and below the higher g loadings for Gc (.89), Grw (.88), Gq (.88), and Gwm
(.85). Accordingly, the Gf latent factor correlations in the Horn no-g model (Supplementary
Materials Table S6) with the other eight factors were not noticeably stronger than the Grw,
Gc, Gq, and Gwm factor correlations with their other eight respective CHC factors.

In summary, the combined McGrew–Carroll exploratory–confirmatory analyses of
46 WJ III tests in the age 14–19 norm sample produced robust factor results consistent
with Carroll’s (2003) analyses. Carroll was pleased with these findings when we jointly
interpreted the EFA-SL results during our May 2003 working session in Alaska. Based
on the analyses, logic, and assumptions articulated by Carroll (2003), the collective EFA-
SL/CFA findings support the Carroll 3S model of the structure of cognitive abilities over
the Gustafsson Gf = g and Horn no-g models. Carroll would have been pleased with this
conclusion. As stated in his own words after our joint work session in May 2003 (Carroll,
personal communication, 6-11-03), “it is truly marvelous that enough data from these
factors had accumulated to make their independence specifiable. Evidence now seems
to be accumulating about the existence, interpretation, distribution and meaning [of] the
factors G, Gf, Gc and others” (see Supplementary Materials Section S6).9

3.3. A Note on Factor Analysis as per Carroll: Art and Science

The factor analyses reported above are based on the EFA-SL methods used by Carroll
in his seminal work combined with the additional CFA methods used in his final 2003
publication. Carroll’s 1993 seminal factor analysis treatise used EFA-SL methods that
were available when he started his project in 1981 (Carroll 1985), which he continually
improved during his decade-long program of research (Carroll 1993). Carroll started
his analyses well before today’s sophisticated EFA and CFA methods proliferated and
matured to their current status. Reflecting his well-known humility and ability to engage
in self-critique (Carroll 1998), Carroll readily acknowledged the limitations of the methods,
procedures, and software he used to produce his conclusions (Carroll 1993, 1998). His
insights regarding factor analyses are illustrated in one of his comments that the value
of factor analysis methods was in a negative sense (Anderson 1985)—“when individual
differences in two variables are uncorrelated, or appear on different factors, I think it is an
indication that the underlying processes are likely to be quite different, or at least dependent
on quite different stimulus characteristics. I observe much more caution in inferring that
the underlying processes are the same when individual differences on two variables show
significant correlations or appear on the same factor” (Carroll 1985, p. 203, emphasis added).

I was fortunate to learn important tacit EFA and CFA knowledge during my 17 years
of interactions with Carroll, and particularly my private one-to-one tutelage with Carroll
in May 2003. Anyone who reads Chapter 3 (Survey and Analysis of Correlational and
Factor-Analytic Research on Cognitive Abilities: Methodology) of Carroll’s 1993 book,
as well as his self-critique of his seminal work (Carroll 1998) and other select method-
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focused post-1993 publications (Carroll 1995, 1997), should conclude what is obvious—to
Carroll, factor analyses were a blend of art and science. As articulated by some of his
peers (see footnote #2), his research reflected the work of an expert with broad and deep
substantive knowledge of research and theories in intelligence, cognitive psychology, and
factor analysis methods.

In 2003, after Carroll had been using CFA to augment his initial EFA analyses for at
least a decade, Carroll expressed (to me during our May 2003 work week) that he was often
concerned with the quality of some reported factor analyses (both EFA and CFA) of popular
clinical IQ tests or other collections of cognitive ability measures (Carroll 1978, 1991, 1995,
2003). Carroll’s characteristic positive skepticism regarding certain reported factor analyses
was first articulated (as far as I know) in the late 1970’s, when he stated “despite its many
virtues, factor analysis is a very tricky technique; in some ways it depends more on art than
science, that is, more on intuition and judgment than on formal rules of procedure. People
who do factor analysis by uncritical use of programs in computer packages run the risk
of making fools of themselves” (Carroll 1978, p. 91; emphasis added). It is my opinion
that Carroll would still be dismayed by some of the EFA and CFA studies of intelligence
tests published during the past two decades that often used narrow or restricted forms of
factor analysis methods and rigid formal statistical rules for decision-making, with little
attempt to integrate contemporary substantive research or theory to guide the analysis and
interpretation of the results (e.g., see Decker 2021; Decker et al. 2021; McGrew et al. 2023).

Carroll’s unease was prescient of recently articulated concerns regarding two aspects of
the theory crises in structural psychological research—the conflation of statistical (primarily
factor analysis) models with theoretical models and the use of narrow forms of factor
analysis methods (Fried 2020; McGrew et al. 2023). First, many intelligence test batteries
only report CFA studies in their technical manuals. EFA results, which often produce
findings that vary from CFA findings, are frequently omitted. This often leads to debates
between independent researchers and test authors (or test publishers) regarding the validity
of the interpretation of composite or cluster scores, leaving test users confused regarding
the psychometric integrity of composite score interpretations. McGrew et al. (2023) recently
recommended that intelligence test manuals, as well as research reports by independent
researchers, include both EFA and CFA (viz., bifactor g, hierarchical g, and Horn no-g
models), as well as psychometric network analysis (PNA) and possibly multidimensional
scaling analyses (MDSs; McGrew et al. 2014; Meyer and Reynolds 2022). As stated by
McGrew et al. (2023), “such an ecumenical approach would require researchers to present
results from the major classes of IQ test structural research methods (including PNA)
and clearly articulate the theoretical basis for the model(s) the author’s support. Such an
approach would also gently nudge IQ test structural researchers to minimize the frequent
conflation of theoretical and psychometric g constructs. Such multiple-methods research
in test manuals and journal publications can better inform users of the strengths and
limitations of IQ test interpretations based on whatever conceptualization of psychometric
general intelligence (including models with no such construct) underlies each type of
dimensional analysis” (p. 24).

The frequent conflation of psychometric and theoretical g in most intelligence test struc-
tural research resonates Carroll’s concern regarding the unbalanced professional training
and research activities of some educational researchers who lean heavily on methodology and
statistics, with little attention to substantive knowledge or theory. He described such researchers
as “hard-nosed methodologists, the statistician, the test maker, the ‘measurement man’ . . .
the model maker” (Carroll 1985, p. 384). He further opined that a highly sophisticated
statistically driven research method with valid measures “is only a tool for testing good
ideas; it cannot create ideas of any sort, except in so far as its results may suggest good
ideas to the mind of the researchers. The good ideas must come from somewhere. . . they
rarely come from people who are purely methodologists or ‘computer scientists’10 . . . the
educational researcher who conforms too closely to the idea of the ‘computer scientist’ runs
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the risk of being written off as a pure technician, somewhat analogous to the ‘paramedical
specialist’ who is ancillary to the physician” (Carroll 1985, p.384).

Wasserman (2019), in the context of CHC theories factor analysis research, recently
struck a similar chord when he stated that “the good news is that in our age of rapid techno-
logical advancement, CHC has stimulated new, out-of-the-box thinking about cognitive and
intellectual theories in psychological science. My hope is that some of our ‘psychometric
iconoclasts’—researchers who conduct the same types of critical statistical analyses on
every new edition of every new test—will turn their attention to improving CHC theory or
building better tests and theories of their own. Ultimately, there is much more satisfaction in
creating something new than tearing something down” (p. 263). I would also add that it is
much more difficult to create something new than to tear something down. The expertise of
‘psychometric iconoclasts,’ who repeatedly use the same narrow class of statistical methods
and rarely combine them with significant substantive knowledge and theoretical ideas,
is limited.

4. In Search of Cognitive and Achievement Causal Mechanisms: A Carroll
Higher-Stratum Psychometric Network Analysis

Most psychologists interested in intelligence are familiar with Carroll’s 1993 seminal
treatise on the structure of the cognitive ability domain. However, many younger con-
temporary psychologists are likely unaware that Carroll also produced seminal research
in psycholinguistics, the assessment of foreign language aptitude, and the postulation of
his elegant model of school learning (Anderson 1985; Lubinski 2004). As per Anderson’s
assessment, “few ideas have had a more profound influence on educational research and
practice as those embedded in John Carroll’s model of school learning” (Anderson 1985,
p. 3). A common thread in Carroll’s multiple research projects was a desire to understand
learning, especially school learning. Readers interested in understanding his astute and
comprehensive understanding of individual differences research related to school learning
should read Anderson’s (1985) book tribute to Carroll’s early research—Perspectives on
School Learning: Selected Writings of John B. Carroll.

Likely also unknown to many contemporary psychologists is Carroll’s earlier attempts
(Carroll 1974, 1976, 1980, 1981) to identify and organize research regarding elementary
cognitive causal mechanisms that underlie psychometrically identified cognitive abilities.
As stated by Wasserman (2019),

After talking with Carroll, I began to worry that none of us really knew very
much about the mental mechanisms and processes involved with 3S and Horn–
Cattell broad abilities. I was floored when I later learned that Carroll (1974,
1976, 1981) had made serious efforts to characterize cognitive factors in terms
of their constituent cognitive processes, and that he had developed a complete
taxonomy of cognitive processes used in the performance of elementary cognitive
tasks before he started his famous survey of mental abilities. Carroll’s ultimate
goal, I believe, was to survey the full range of cognitive factors with each factor
broken down into its constituent elementary cognitive processes. It would be
analogous to setting up Linnaeus’s eighteenth-century binomial nomenclature—
which introduced the standard hierarchy of class, order, genus, and species—to
classify species based on their DNA! (p. 254)

Carroll believed that many “special abilities, aptitudes, achievements, and skills [are]
worthy of measurement, whatever their relation to general intelligence might be” (Carroll 1993,
p. 36; emphasis added). Furthermore, Carroll stated that “in my view, lower-order factors
(both Stratum I and II) are worthy of scientific study, not only for themselves, but also for
their possible social and practical importance” (Carroll 1996, p. 13; emphasis added). Based on
the confluence of his beliefs that some specific cognitive abilities have practical importance
and his efforts to understand the basic elementary cognitive mechanisms underlying these
abilities, Carroll likely would have been interested in, and most likely would have looked
favorably on, the relatively new psychometric network analysis (PNA) methods to explore
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cognitive abilities and cognitive–achievement relations. After a brief explanation of PNA
methods, a PNA of CHC factor composite variables derived from the MC analysis described
earlier is presented. I believe Carroll would have viewed such analyses as an appropriate
extension of much of his life’s scholarly work.

4.1. Psychometric Network Analysis Methods: A Brief Introduction

Factor analysis methods have been the descriptive taxonomic workhorse of 20th cen-
tury cognitive ability research. These methods are based on the premise that, among a collec-
tion of positively correlated cognitive ability tests (i.e., the positive manifold), there is a “com-
mon cause” latent variable “out there” that can be “detected” (van der Maas et al. 2014). A
significant limitation of common cause models is that, regardless of how psychometric g
is specified (e.g., bifactor g vs hierarchical g), psychometric g is explicitly operationalized
as the primary cognitive mechanism or lever for producing change, either directly on the
abilities measured by the manifest test indicators (bifactor g model) or on the stratum II
broad CHC constructs (hierarchical g). This can be seen in factor analysis path diagram
figures, where the single-headed arrows originate from the psychometric g factor (typically
an oval) to either the manifest indicators (i.e., tests represented by rectangles) or first-order
factors (ovals). The origin and direction of the arrows imply that g is the primary causal
mechanism that explains performance on individual cognitive tests, either directly or as
mediated through the first-order CHC factors. A model with such a central dominant
psychometric g factor “bars complex interactions both within the construct of intelligence
itself and with its adjacent systems” (Savi et al. 2021, p. 5).

In contrast, modern network-based models of intelligence (e.g., process overlap theory
and dynamic mutualism) (Protzko and Colom 2021; van der Maas et al. 2006, 2019) disre-
gard the assumption that latent unobserved factor constructs cause the positive manifold
among cognitive ability tests. Instead, network models (and psychometric network analysis
methods) are grounded on the assumption that cognitive tests positively covary because
they are the by-product (an emergent property) of a complex system of biological and cognitive
mechanisms (Hampshire et al. 2012; van der Maas et al. 2019). That is, modern network
cognitive ability theories posit that psychometric g is the result of, and not the cause of,
the positive manifold between tests in an IQ test battery (Conway et al. 2021; Fried 2020;
Kovacs and Conway 2016, 2019; Hampshire et al. 2012; Kan et al. 2019). While common
cause factor analysis models have dominated 20th-century intelligence research, network
theories and methods “will dominate the twenty first [century of human intelligence
research]” (Savi et al. 2021, p. 1). Network theories and methods can move intelligence
research forward by going beyond the descriptive function of developing cognitive tax-
onomies (e.g., CHC theories) to the development and testing of theories and models that
explicate possible underlying cognitive causal mechanisms and, in turn, inform possible
interventions (McGrew et al. 2023).

Atheoretical, data-driven, and descriptive PNA models can illuminate previously
hidden insights by examining high-dimensional data where tests can concurrently serve as
both predictor and predicted variables (Angelelli et al. 2021; Epskamp et al. 2017). Briefly,
in PNA, the manifest measures (tests) are represented as nodes. Links between nodes (edges)
are identified and the strength of the non-directional relations between each pair of nodes
are statistically estimated (partial correlation coefficients). Thicker edges represent stronger
node associations. In the network model, all patterns of pairwise conditional test relations
are statistically estimated independently of relations with all other tests in the network. All
salient node relations are presented in a multidimensional visual–graphic network (see
Figures 1 and 2). PNA models can also identify groupings or communities of measure
nodes akin to latent variable common cause factors (Golino and Epskamp 2017). The
topography of a cognitive abilities test network is characterized by tools from network
science (i.e., centrality metrics) (Borsboom et al. 2021; Bulut et al. 2021; Jones et al. 2018; Neal
and Neal 2021; Robinaugh et al. 2016). These metrics include the closeness index (how close
a measure node is, on average, to all other measure nodes in the network), the betweenness
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index (how frequently a measure node lies on the shortest path connecting any two other
nodes in the network), and the strength index (how strongly, on average, a specific measure
node is connected to all other nodes in the network.
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and one reading (GRWR2) composite measure in the cognitive–reading network model. Note.
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relative weight size). The three most central nodes are designated by black and gray circles on nodes
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The benefits of PNA (over common cause factor models) are multiple (Angelelli et al.
2021; Borsboom et al. 2021; Epskamp et al. 2017; McGrew et al. 2023). In the current context,
“the primary value of these descriptive models is their ability to function as a bridge
to theory formation and the ability to hypothesize, and empirically test or statistically
simulate, potential causal mechanisms in the network (Borsboom et al. 2021; Haslbeck et al.
2021)” (McGrew et al. 2023, p. 5). PNA models can be used to generate causal hypotheses
between abilities measured by individual node measures, offering insights regarding the
most likely influential targets (or target systems) for intervention (Haslbeck et al. 2021;
McGrew et al. 2023).

As noted by Protzko and Colom (2021), PNA is conceptually akin to bifactor factor
analysis models that first remove the psychometric g variance in a collection of cognitive
tests before examining the residual variance that may represent common broad CHC
dimensions. PNA accomplishes the same effect by analyzing the partial correlation matrix
of all tests, where, for each pair of tests, the variance shared with all other measures
(i.e., psychometric g) in the network is statistically removed (McGrew et al. 2023); “this is
not to be confused with the assumption that psychometric g is essential to PNA research”
(p. 17). In the current context, the PNA results presented below represent the relations
between specific broad CHC ability measures after psychometric g has been removed—a
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model consistent with Carroll’s strong g position alongside his belief that some specific
broad and narrow abilities are important in applied settings.
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4.2. A Carroll-Inspired Higher-Stratum PNA Analysis of Cognitive–Achievement Variables
4.2.1. Methodology

The PNA of all 46 WJ III tests from the MC analysis would have produced PNA
network models of substantial complexity that would defy easy interpretation. More
importantly, Carroll (1993, 1995) recommended that cognitive ability research needed more
higher-stratum research designs where composite variables are established to represent
stratum II broad CHC abilities. According to Carroll (1993), higher-stratum designs are
where “variables are sums or averages of scores obtained on two or more tests of a given
first-stratum factor” (p. 579). Great care and caution must be used to best represent the
broad CHC factor (i.e., adequate construct representation). Thus, the results from the final
MC analysis reported in Table 1 were used to create eight two-to-three-test composite
variables representing nine of the reported first-order CHC broad factors in Table 1.

The WJ III W-score, which is a direct transformation of the Rasch logit scale (with a
center of 500 points at the age of 10 years) (McGrew and Woodcock 2001; McGrew et al.
2014), was the selected metric for the creation of the CHC composite variables. The W-score
is an equal interval growth score strongly influenced by developmental (age) variance.
PNA methods, for each pair of measures, statistically remove the variance shared with
all other measures (including the W-score’s developmental variance) before constructing
the network.
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For the reasons reported earlier, only a single Gs composite was created (and not
separate Gsc and Gsa composites). The final set of composite variables, where each CHC
ability abbreviation is followed by a “2” or “3” (designating the number of test scores
summed and averaged to create the composite), were Gc3 (comprehension–knowledge;
Verbal Comprehension, General Information, and Oral Comprehension), Gf3 (fluid reason-
ing; Concept Formation, Analysis–Synthesis, and Number Series), Gs3 (processing speed;
Visual Matching, Cross Out, and Pair Cancellation), Ga3 (auditory processing; Sound
Blending, Incomplete Words, and Sound Patterns–Voice), Gwm3 (working memory; Audi-
tory Working Memory, Memory for Words, and Numbers Reversed), Gv2 (visual–spatial
processing; Spatial Relations and Block Rotation), Gl (learning efficiency; Visual–Auditory
Learning and Memory for Names), Gr2 (retrieval fluency; Retrieval Fluency and Rapid
Picture Naming), Gq2 (quantitative knowledge; Applied Problems and Calculation), and
Grwr2 (reading/writing—reading; Letter–Word Identification and Passage Comprehen-
sion). Given that not all subjects had scores for all 46 tests, the sample size for the PNA
analyses of composite variables was smaller than that used for the factor analyses reported
in Table 1. The listwise deletion of missing data option was used, resulting in a final data
file of 670 subjects. This sample had a mean age of 16.1 years (SD = 1.6 years).

The analysis was completed with the open-source JASP network analysis software pro-
gram module. Using the JASP default parameters, the module generated Gaussian graphical
models (GGM) with the EBICglasso estimator (Epskamp and Fried 2018; Friedman et al. 2008).
The LASSO regularization technique was used to estimate the edge weights (partial cor-
relations). This statistical procedure penalizes model complexity in favor of parsimony
(Epskamp and Fried 2018). The LASSO technique removes non-significant edges by esti-
mating them to be zero. The remaining weights are typically referred to as non-zero weights.

Two network models were estimated, both including the Gc3, Gf3, Gs3, Ga3 Gwm3,
Gv2, Gl2, and Gr2 cognitive composite variables. The reading PNA model also included
the Grwr2 composite achievement variable, while the math PNA model included the
Gq2 composite achievement variable. The separate achievement domain models were
analyzed to determine whether the CHC cognitive composite variables demonstrated
achievement domain-general or domain-specific relations between cognitive variables and
reading and math achievement. The PNA centrality indices for both models are presented
in Supplementary Materials Section S7, Table S9. Centrality indices are often presented
in the form of standardized z-scores. In this study, the relative centrality z-scores were
rescaled so that the strongest test had a value of 1.0 and the weakest had a value of 0.
As demonstrated by McGrew et al. (2023), this rescaling does not impact interpretation.
The relative centrality metrics are analogous to common psychometric test characteristic
information (e.g., g-loadings, factor loadings, reliabilities, etc.) and, thus, are more familiar
to intelligence test researchers. In the evaluation of the relative size of the centrality metrics,
the values for the two achievement composites (Grwr2 and Gq2) were excluded. The
resultant reading and math PNA models are presented in Figures 1 and 2.

4.2.2. Results and Discussion

In both models, the cognitive variables are designated by the yellow nodes and the
respective achievement domain is represented by a blue node. The strength of the relations
(edge weights; partial correlation coefficients) between each pair of measures is represented
by the width of the connecting lines in the visual network models. In the reading model, 32
of the 36 edge weights were non-zero (sparsity index = .11), while in the math model, 30 of
the 36 edge weights were non-zero (sparsity index = .17). The relatively large number of
non-zero network edges is likely due to the high power of the statistical analyses due to the
relatively large sample size. Only the significant edge weights that were greater than .10
are included in both figures, differentiated by the magnitude of the weights (.10 to .19, .20
to .29, ≥ .30). The complete weights matrix tables are included in Supplementary Materials
Section S7, Table S10.
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The three most central nodes in each model were the same. The Gf3 variable was
consistently the most central node, as indicated by relative centrality strength, closeness,
and betweenness indices of 1.0 in both models. In the reading model, the Gwm3 measure
was the second highest variable as per the strength (.75) and closeness (.83) indices, while
Gs3 was third in strength (.68) and the second highest in the betweenness index (.60).
Similarly, in the math model, the Gwm3 measure was the second highest variable as per
the strength (.65) and closeness (.86) indices, while Gs3 was third in strength (.61) and was
the second highest in the betweenness index (.55). The centrality of these three composite
measures (Gf3, Gwm3, and Gs3) is designated by the small black or gray circles on their
respective nodes in Figures 1 and 2.

Currently, both models are descriptive, not explanatory. For example, the .39 weight
between Gr2 and Gs3 in both Figures 1 and 2 may suggest that Gr2 has a unidirectional
effect on Gs3 (or vice versa) or the relationship is bidirectional. The triangle formed by the
significant Gf3, Gv2, and Gl2 links in both figures may suggest a common cause (Cattell’s gf
as an overarching cause of all three) or a common effect (Gv2 and Gl2 are correlated, and
both exert a common effect on Gf3 (Borsboom et al. 2021)). The primary value of these
descriptive models is their ability to function as a bridge to theory formation and the ability
to hypothesize and empirically test or statistically simulate potential causal mechanisms in
the network (Borsboom et al. 2021; Epskamp et al. 2017; Haslbeck et al. 2021; McGrew et al.
2023). The ability to bridge the descriptive networks to theories and causal mechanisms
requires considerable substantive knowledge. Furthermore, moving from simple exploratory
descriptive models to formal theory and, recursively, from theory-implied data models to
the refinement of formal theories is complex (Epskamp et al. 2017; Haslbeck et al. 2021;
Lunansky et al. 2022) and beyond the scope of this paper.

Few, if any, validated theoretical causal mechanisms between and among all major
CHC abilities exist in the literature. However, Hajovsky et al. (2022) recently reported, via
exploratory meta-structural equation modeling applied to data from multiple cognitive
and achievement batteries, how three established theories of cognitive and achievement
development (i.e., the developmental cascade theory, Cattell’s investment theory, and an
expanded simple view of the reading model) could be applied to a complex interconnected
network of CHC constructs and measures. Given that the purpose of the interpretation of
Figures 1 and 2 is to demonstrate the potential of Carroll’s higher-stratum design cognitive–
achievement PNA models, only the two most recognized theories (i.e., developmental
cascade and Cattell’s investment theory) were applied to the two models.

Briefly, the concept of developmental cascades has a long history in developmental
psychology. Developmental cascades “refer to the cumulative consequences for development
of the many interactions and transactions occurring in developing systems that result in
spreading effects across levels, among domains at the same level, and across different
systems or generations. Theoretically these effects may be direct and unidirectional, direct
and bidirectional, or indirect through various pathways, but the consequences are not
transient: developmental cascades alter the course of development” (Masten and Cicchetti
2010, p. 491). In the cognitive abilities literature, robust research has established the general
age (maturation)—> Gs—> Gwm—> Gf—> acquired knowledge (e.g., Gc and achievement
domains) developmental cascade theory (De Alwis et al. 2014; Fry and Hale 1996, 2000;
Kail 2007; Kail et al. 2016; McGrew 2005), although more complex and developmentally
nuanced versions have also been reported (Demetriou et al. 2014; Tourva and Spanoudis
2020). As per Cattell’s investment theory (Cattell 1971, 1987), the consistent application of
fluid reasoning (gf) to learning via schooling and experience generates new crystallized
acquired knowledge (gc) (Schneider and McGrew 2018). The general mechanisms of
this investment come from societal (e.g., educational resources), familial (e.g., resources
and expectations), and personal (e.g., personality, motivation, and volition) investment
mechanisms (McGrew 2022; Schneider and McGrew 2018).

Figure 3 represents a first, albeit simplistic, attempt to identify the developmental
cascade and Cattell investment mechanism relations and results embedded in the reading
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and math PNA model figures. Two assumptions simplified the generation of these hypoth-
esized models. First, it was assumed that the reading (Grw-R) and math (Gq) variables
were “downstream” achievement outcomes reflecting the cumulative impact of “upstream”
cognitive variables. Second, the order of the cognitive variables in the developmental cas-
cade sequence was unidirectional from left to right (likely an oversimplification of reality).
Third, the developmental cascade and Cattell investment theories overlapped in a portion
of the sequence with Gf preceding the development of acquired knowledge (Gc, Grw-R,
and Gq). An inspection of Figure 3 suggests the following general conclusions.
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First, the strength of the links between the central developmental cascade cognitive
variables (Gs, Gwm, Gf, and Gc) is similar in both models. This suggests that most of the
relations between CHC cognitive variables are similar and do not vary when different
achievement variables are added. Second, the reading model (but not the math model)
includes the Ga domain, a finding consistent with the extant CHC reading literature that
suggests that Ga may be a reading domain-specific cognitive ability. In the reading model
Ga has a direct link to reading (.14), but also a possible indirect mediated link via Gc (.11).
The same Ga→Gc link (.17) is present in the math model, but there is no direct link from Ga
to math; thus, Ga is not included in the math model in Figure 3. The link of Ga to language
(Gc) is consistent with research that has demonstrated that Ga may serve an important
scaffolding function for the development of cognition and language (Conway et al. 2009;
Schneider and McGrew 2018). Finally, the number of cognitive domains with direct links
(edge weights) with achievement is greater for reading (five abilities; Gs, Gwm, Gf, Gc,
and Ga) than for math (three abilities; Gs, Gf, and Gc). This suggests that reading is a
more cognitively complex skill than math at ages 14 through 19. Both Gf and Gs displayed
links with reading (.22 and .14, respectively) and math (.42 and .11, respectively). The
Gf link is considerably stronger for math (.42) than reading (.22), suggesting that Gf
may be more important for math (more math domain-specific) than reading. A major
source of the stronger Gf–math achievement (Gq) link is likely due to two of the three
Gf3 composite variables being a miniature math logic system task to assess deductive
reasoning (i.e., Analysis–Synthesis) or a classic measure of quantitative reasoning (Number
Series; Carroll 1993). Conversely, the Gc link is stronger for reading (.35) than math (.20),
which suggests that verbal knowledge and comprehension abilities are relatively more
important for reading when compared with math at ages 14 through 19. The differential
reading (Ga and Gc) and math (Gf) findings are consistent with the extant research on
cognitive–achievement relations that has used multiple regression (no-g) or hierarchical g
SEM models (McGrew and Wendling 2010). A notable difference between the models is
that, in the reading model, Gwm has a direct link to reading (.18), but not Gq. In the math
model, Gwm instead has a direct link (.12) to Gc.

The remaining portions of the two models are, currently, only open to general spec-
ulation and need further investigation. The strong Gr2–Gs3 link (.39 in both Figures 1
and 2) could be interpreted as the hierarchical gs proposed by Schneider and McGrew
(2018) or, conversely, might suggest that Gs is a causal ability for Gr (Forthmann et al. 2019).
As mentioned previously, the Gf3, Gv2, and Gl2 triangle in both figures could suggest
unknown unidirectional or bidirectional relations or a common cause (e.g., gf) underlying
the three constructs.

The .26 (reading; Figure 1) and .28 (math; Figure 2) Ga3–Gwm3 link is intriguing
and warrants more comment. In the reading model in Figure 3, this path is designated
by a bidirectional arrow that, in part, reflects uncertainty in the Gwm and Ga causal
relations. Horn (1985), in an early developmental and information processing cognitive
hierarchy, placed “broad auditory thinking” (Ga) downstream from “short-term acquisition
retrieval” (SAR; i.e., SAR—>Ga). However, Horn’s SAR reflected a component of Gwm,
namely short-term memory storage. It is likely that Horn’s (1985) model would have
been different if specified after contemporary notions of working memory (Gwm) became
available. Hajovsky et al.’s (2022) exploratory meta-structural equation modeling-based
model reported a similar Gwm→Ga causal direction. However, if Ga is conceptualized
and measured as more of a working memory subordinate system “limited to the storage
of heard and spoken speech” (Baddeley 2012, p. 12), Ga might be conceptualized more
as reflecting the phonological loop (Ga) working within the context of working memory
(Gwm) (Baddeley 2012), which might be represented by bidirectional arrows. However,
Baddeley (2012) also acknowledged that the phonological loop (Ga) might also “provide
a means of action control” (p. 11) (e.g., internal verbal self-instruction that influences
working memory), which would be consistent with a Ga→Gwm causal direction. Another
possibility may be that Gwm and Ga reflect a common cause serial or sequential processing
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cognitive dimension (Kaufman and Kaufman 1983; Naglieri and Das 1997), requiring a
bidirectional arrow that reflects their shared covariance. Finally, if Ga is conceptualized
as delivering only a fuzzy trace signal, then the phonological loop hypothesis is flawed
and perhaps Ga→Gwm is the correct causal direction. Confounding the possible Gwm
and Ga relationship is how the two constructs are measured. Most contemporary Gwm
tasks minimize Ga involvement, while, in contrast, most Ga tasks fail to minimize working
memory demands. Additional research with clearly operationally defined Gwm and Ga
measures, especially in time-series longitudinal studies, is needed to solve the Gwm–Ga
“chicken or the egg” question.

The three central nodes designated in Figures 1 and 2 are also included in Figure 3.
Interestingly, the Gs, Gsm, and Gf trilogy is a central core of the cognitive developmental
cascade theory. This Gs—>Gwm—> Gf trio could represent what Haslbeck et al. (2021)
defined as a possible target system of the CHC network—“the particular parts of the real
world and the relationships among them that give rise to the phenomena of interest . . .
theories can thus be understood as models that represent the target system” (p. 2). In a
related analysis using the WJ IV norm data, McGrew et al. (2023) reported a CHC PNA of
carefully selected CHC construct measures that identified the working memory–attentional
control (Gwm-AC) complex (comprised of Gs, Gwm, and Gr cognitive efficiency constructs)
as the most likely target system for intellectual functioning.

Traditional statistical prediction models of achievement, such as multiple regression,
provide few clues regarding potential complex causal relations between and among vari-
ables. The PNA cognitive–achievement interpretations offered here, although speculative,
when informed by the extant substantive research and theoretical literature, have greater
potential to elucidate the complex relations between and among CHC cognitive and achieve-
ment constructs. The descriptive PNA models (Figures 1 and 2) can be “explored with
various tools from network science (e.g., exploratory and confirmatory PNA; exploratory
stepwise search algorithms to guide the removal or addition of nodes to improve the
model; in silico mathematical simulations where changes in network nodes are statistically
modified [or constrained] to see how the effect propagates through the entire network—
and potentially reveals causal mechanisms in the network; etc.) (Epskamp et al. 2017;
Haslbeck et al. 2021; Lunansky et al. 2022)” (McGrew et al. 2023, p. 6).

PNA could assume a pivotal role in improving CHC cognitive–achievement relations
SEM modeling research as it “acts as a natural interface between correlation and causality
. . . [as] the typical attempt to determine directed SEMs from correlation structures in
fact appears somewhat haphazard in psychology, a historical accident in a field that has
been prematurely directed to hypothesis testing at the expense of systematic exploration”
(Epskamp et al. 2017, pp. 924–25). PNA methods could facilitate CHC SEM modeling via the
systematic identification of relations between multiple variables unfettered by concerns for
“direct causal relations, reciprocal causation, latent common causes, semantic overlap between
items [variables], or homeostatic coupling of parameters” (Epskamp et al. 2017, p. 925).

Psychometric network analysis of CHC-derived higher-stratum composite variables,
augmented by substantive theoretical knowledge and tools from network science, can
serve as a new lens to identify and understand relations between cognitive abilities and to
potentially improve intellectual functioning and school learning, which are all topics near
and dear to Carroll’s enduring legacy.

5. Summary

Approximately 30 years ago, John “Jack” Carroll published, arguably, one of the most
paradigm-shifting research syntheses in the field of intelligence. Carroll was the right
researcher, at the right time, with the right degree of expertise regarding individual differ-
ences in cognitive abilities to provide the field of intelligence its first empirically grounded,
defensible, theory-based taxonomy of human cognitive abilities. Carroll’s distillation of a
century of psychometric research that started in earnest in the early 1900′s with Spearman
was in the form of Carroll’s three-stratum (3S) theory of cognitive abilities. Few others could
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have produced such a magnum opus regarding the structure of human cognitive abilities
(Lubinski 2004), a decade-long “retirement” project of Carroll’s (Carroll 1993).

For the latter half of the 20th century, the foundation of clinical intelligence test inter-
pretation resembled a duct-taped mash-up of select ad hoc empirical considerations, the
retrofitting of old theories to new tests, and clinical lore (Schneider and Flanagan 2015). As
the result of the (initially) serendipitous and subsequent ongoing consultation between
Carroll, Horn, and the Woodcock–Johnson (WJ, WJ-R, and WJ III) author teams, Carroll’s
3S theory was commingled with Raymond Cattell’s and John Horn’s Gf-Gc theory in an
effort to narrow the long-standing theory–research–practice gap in applied intelligence
test development and interpretation. The palpable thirst for a defensible cognitive abilities
nomenclature for intelligence testing was, over a relatively short period of time, quenched
by the arrival (and practical translation) of Carroll’s 3S theory. Subsequently, practical ap-
plied test development needs resulted in the informal melding of the psychometric theories
of Carroll, Cattell, and Horn as the tripartite Cattell–Horn–Carroll (CHC) theory. CHC
theory rapidly became the standard nomenclature for communication in the intelligence
research and applied testing communities. The narrowing of the theory–research–practice
gap, which was largely kick-started by Carroll’s 1993 tome, is one of Carroll’s many endur-
ing legacies.

Not long after the arranged marriage of Cattell’s, Carroll’s, and Horn’s respective
theories as CHC theory, and unbeknownst to many engaged in the infusion of CHC theory
into clinical practice, both Horn and Carroll became vexed with the popularity of the
singular CHC term. CHC theory gave the false impression that Cattell, Horn, and Carroll
had resolved their theoretical differences. They had not. Carroll and Horn had a long-
standing sharp, and often contentious, difference of opinion regarding the need for a
psychometric g factor in a structural model of intelligence. A brief historical review of the
origins and evolution of CHC theory suggests that Cattell, Horn, and Carroll’s respective
psychometric theories of intelligence should now be recognized on their own merits and
henceforth collectively be referred to as a family of obliquely correlated CHC theories. Of
the three theories, Cattell’s Triadic theory was the greatest casualty of the success of the
singular CHC theory umbrella term and should be resurrected and empirically compared
with the structural models of Horn and Carroll.

In Carroll’s honor, this paper presented a previously unpublished exploratory factor
analysis completed by Carroll (collaboratively with this author a little more than a month
before his passing in 2003) of a large set of 46 cognitive and achievement tests. The results
validated Carroll’s (2003) conclusions that his 3S structural model (i.e., standard multifactorial
view) was a more accurate description of the structure of human cognitive abilities than
the alternative Gustafsson . . . Gf = g (i.e., limited structural analysis view) and Horn no-g
(second-stratum multiplicity view) models. These findings were reinforced by the recent
CFA bifactor analyses of the same 46-test dataset as reported in this paper. The EFA and
CFA results collectively suggest that Carroll’s (1993) 3S structure, at the global level, still
holds (Whilhelm and Kyllonen 2021). The combined EFA and CFA of 46 tests, completed
as per Carroll’s factor analysis methodology, supported a model with nine broad CHC
factors (i.e., Gf, Gc, Gv, Gl, Gr, Gwm, Gs, Gq, and Grw) and a dominant psychometric
g factor at the apex. As summarized by Whilhelm and Kyllonen (2021), “there may be
alternative explanations besides the three-stratum model . . . but for now, the positing of a
set of discrete abilities whose identities are established stands” (p. 2). Carroll’s (1993) 3S
model now serves as a critical reference point for future research focused on understanding
the structure and causal mechanisms of human intelligence.

Carroll’s (1993) work is the capstone event of the 20th century of psychometric intelli-
gence research, signaling the end of major discoveries regarding the structural organization
of the most studied broad cognitive ability domains. However, Carroll (1993) made it
abundantly clear that his synthesis was only a snapshot, and that “the picture is far from
complete . . . many factors remain inadequately specified, and many aspects of the three-
stratum theory need to be tested and refined” (p. 688). Schneider and McGrew (2012,
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2018) twice updated the CHC taxonomy based on research published after Carroll’s (1993)
work, often following nascent clues offered by Carroll. However, additional factor analysis
studies are still needed.

First, efforts should continue to identify and clarify the number and organization
of the poorly understood, or yet-to-be-identified, narrow stratum I abilities (Schneider
and McGrew 2018; Wasserman 2019). Second, additional structural research is needed to
better map and understand the relatively new, or less-researched, broad CHC domains of
emotional intelligence (Gei), quantitative knowledge (Gq), olfactory abilities (Go), tactile
abilities (Gh), kinesthetic abilities (Gk), psychomotor abilities (Gp), and psychomotor
speed (Gps). Third, as per Carroll’s (1993, 1995) recommendation, research is needed to
identify possible intermediate stratum cognitive ability or processing dimensions that
lie between broad CHC abilities and psychometric g (Schneider and McGrew 2018). For
example, McGrew et al. (2023), using psychometric network analysis (PNA) and related
methods with CHC theory-consistent test indicators, identified possible System I (i.e., more
automatic or automatized cognitive functions) and System II (more controlled deliberate
cognitive functions) CHC cognitive processing dimensions (Barrouillet 2011; De Neys and
Pennycook 2019; Kahneman 2011). These researchers also identified a Cattell-like gf–gc
(Cattell 1987) CHC continuum (like Ackerman’s intelligence-as-process and intelligence-as-
knowledge distinction; Ackerman 1996, 2018). Both the gf–gc and System I–II intermediate
stratum dimensions may be necessary to better understand the relations and possible causal
mechanisms between and among broad and narrow cognitive abilities, as well as to inform
intelligence test development and interpretation practices. Whilhelm and Kyllonen (2021)
have provided additional research recommendations building on Carroll’s (1993) work.

In the spirit of Carroll’s career-long search to better understand the structure and
causal mechanisms underlying cognitive abilities and school learning (Anderson 1985;
Wasserman 2019), and his recommendation (Carroll 1993) for more higher-stratum research
designs, the EFA and CFA structural results reported here were extended by the application
of the psychometric network analysis (PNA) of broad CHC cognitive and achievement com-
posite measures. The reported CHC-based PNA models produced findings consistent with
the achievement domain-general developmental cascade and Cattell investment theories of
cognitive development, as well as the extant reading and math domain-specific CHC cogni-
tive ability research. The PNA methodology and results demonstrate how this relatively
new methodology can complement factor analysis by providing a framework for identify-
ing and empirically evaluating cognitive–achievement causal relations and mechanisms,
with an eye toward improved cognitive intervention research and theory formation.

It is believed that Carroll would welcome the integration of factor analysis and PNA
methods. Ironically, the PNA of Carroll’s last published g-dominated factor analyses (Car-
roll 2003), and the results presented in this paper, eschew the inclusion of a psychometric
g factor, a factor central to Carroll’s 3S model. The non-g PNA models would likely be
viewed favorably by Carroll as they are consistent with his long-held belief that some
broad and narrow cognitive abilities are central to understanding the causal mechanisms of
intelligence and school learning beyond general intelligence (g) (Carroll 1993, 1998). Carroll
was clearly one of the most eminent maestros who orchestrated the astute integration of
the extant intelligence theoretical and research literature with the art and science of factor
analysis methodology to produce the classic capstone masterpiece of the 20th century. PNA
models are likely to be more pivotal in future studies focused on investigating the possible
causal models of intelligence. The higher-stratum designed cognitive–achievement PNA
research presented in this paper is a logical extension of Carroll’s legacy that can bridge the
20th and 21st centuries of psychometric intelligence research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jintelligence11020032/s1, Section S1 CHC Broad and Narrow
Ability Definitions and Codes; Section S2, Descriptions of 46 WJ III Tests; Section S3, McGrew–Carroll
Exploratory Factor Analysis (Principal Factoring with Hierarchical Orthogonalization of Factors with
Schmid-Leiman Technique; EFA-SL) of 46 WJ III Tests in Ages 14–19 Sample (Completed 05-29-03),
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Carroll’s EFA-SL Software and Methods Described in His 1993 Seminal Book, Table S2, Reorganized,
Reformatted and Relabeled Version of Table S1; Section S4, Notes on Completion of WJ III 46-test
CFA, Table S3, WJ III 46-test CFA Model Fit Statistics (Model Solution in Table 1 in manuscript);
Section S5, Supplementary Hierarchical g and Horn no-g WJ III 46-test CFA, Table S4, WJ III 46-test
Hierarchical g CFA model, Table S5, WJ III 46-test Hierarchical g CFA (Table S4) Model Fit Statistics,
Table S6, WJ III 46-test Horn CFA no-g Model, Table S7, WJ III 46-test Horn no-g Model (Table S6)
Latent Factor Correlations, Table S8, WJ III 46-test Horn no-g CFA Model (Table S6) Fit Statistics;
Section S6, Carroll’s Final Recorded Hand Printed Thoughts Regarding the General Intelligence (g)
factor; Section S7 CHC Higher-Stratum Design Psychometric Network Analysis Centrality Metrics
and Weight Matrices for Reading and Math Models, Table S9, CHC Cognitive–Achievement PNA
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Weights Matrices for Reading and Math Models; References.
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Notes
1 Given the repeated reference to Carroll’s (1993) book and the 3S theory included therein, hereafter, in this paper, this work is

referred to as Carroll’s book or Carroll’s work.
2 The broad CHC ability names, definitions, and abbreviations are drawn from Schneider and McGrew (2018): Gc (Comprehension-

Knowledge), Grw (Reading and Writing), Gq (Quantitative Knowledge), Gf (Fluid Reasoning), Gwm (Short-term Working
Memory), Gv (Visual–spatial Processing), Ga (Auditory Processing), Gl (Learning Efficiency), Gr (Retrieval Fluency), and Gs
(Processing Speed). Definitions for these broad and narrow CHC abilities are included in Supplementary Materials Section S1.

3 See the personal reflections of Julian Stanley, David Lubinski, A. T. Panter, and Lyle V. Jones published by the Association for
Psychological Science (APS) on 9 November 2003 (https://www.psychologicalscience.org/observer/in-appreciation-john-b-carroll
(accessed on 4 October 2021)).

4 The lower-case italic subscripted notation (e.g., gf and gc) recognizes that Cattell’s general capacities were more consistent with
(but different from) Spearman’s general intelligence (g). The more common upper case CHC theory ability notation (e.g., Gf and
Gc) acknowledges both Horn and Carroll’s notions of broad abilities. See Schneider and McGrew (2018) for a brief discussion.

5 Carroll used the older Glr and Gsm notation for two factors. These CHC factor labels, where appropriate, have been changed to
Gl and Gr (formerly together as Glr), and Gwm as per the most recent iteration of CHC theory (Schneider and McGrew 2018).

6 In Carroll’s (2003) analyses, he used the complete variable names in the correlation matrices presented in that publication (Tables
1.1 and 1.4), but used his own test variable name abbreviations when presenting the results of his factor analysis (Tables 1.2, 1.3,
and 1.5). His test name abbreviations are included here for those interested in linking the current discussion with the formal
factor analysis output presented in his 2003 chapter. In this section, MC factor loadings from Table 1 are in regular font, while
Carroll analysis factor loadings (Table 1.5 in Carroll 2003) are in italic font.

https://www.psychologicalscience.org/observer/in-appreciation-john-b-carroll
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7 As defined by Schneider and McGrew (2018), “Major factors are those that represent the core characteristics of the domain,
typically represent more complex cognitive processing, tend to display higher loadings on the g factor when present in the
analysis, and are more predictive and clinically useful. Minor factors typically are less useful, less cognitively complex, and less
g-loaded.” (p. 141; emphasis added).

8 As would be expected, each test’s loadings on the nine CHC factors in the hierarchical g and Horn no-g models had identical
factor loadings (save for a few differences to the second decimal place) and only differed in the specification of the covariance of
the first-order latent CHC factors (see Supplementary Materials Section S5, Tables S4 and S6) as correlated factors or as loadings
on the second-order g factor. Furthermore, inspection of fit statistics found that the MC analysis bifactor (CFI = .890; TLI = .878;
RMSEA = .063 [90% CI 0.62–0.65]), hierarchical g (CFI = .871; TLI = .862; RMSEA = .067 [90% CI 0.66–0.69]), and Horn no-g
(CFI = .880; TLI = .868; RMSEA = .066 [90% CI 0.65–0.67]) models did not differ substantially in model fit (see Supplementary
Materials Section S4, Tables S3, S5 and S8). Substantive theoretical considerations would be important in determining which of
the three models was a “better” model, a discussion beyond the scope of the current paper.

9 Supplementary Materials Section S6 includes a copy of Carroll’s last known recorded thoughts regarding the psychometric
g factor (copy of hand printed note dated 6-11-03 and a transcribed version). This note includes the referenced personal
communication statement.

10 Carroll used the phrase “computer scientists . . . [as a] shorthand label, as it were, for a wide class of educational research
specialists. Not all of those I refer to in this way are necessarily computer scientists in the strict sense”(Carroll 1985, p. 384). Instead,
Carroll used this label to characterize a class of researchers as described in this paragraph (i.e., the hard-nosed methodologists).
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