
Kevin S. McGrew

Abstract
The Cognitive-Affective-Motivation Model of Learning (CAMML) is a proposed framework for integrating contemporary motivation, affective (Big 5 personality) and cognitive (CHC theory) constructs in the practice of school psychologists (SPs). The central tenet of this article is that SPs need to integrate motivation alongside affective and cognitive constructs vis-à-vis an updated trilogy-of-the-mind (cognitive, conative, affective) model of intellectual functioning. CAMML builds on Richard Snow’s seminal research on academic aptitudes—which are not synonymous with cognitive abilities. Learning aptitude complexes are academic domain-specific cognitive abilities and personal investment mechanisms (motivation and self-regulation) that collectively produce a student’s readiness to learn in a specific domain. CAMML incorporates the “crossing the Rubicon” commitment pathway model of motivated self-regulated learning. It is recommended SPs take a fresh look at motivation theory, constructs, and research, embedded in the CAMML aptitude framework, by going back-to-the-future guided by the wisdom of giants from the field of cognition, intelligence, and educational psychology.

Keywords
motivation, self-regulated learning, aptitudes, domain-specific, aptitude complexes, crossing the Rubicon, taxonomies, individual differences, readiness, CHC theory, Big 5, Gf-Gc theory

1Institute for Applied Psychometrics, Saint Joseph, MN, USA

Corresponding Author:
Kevin S. McGrew, Institute for Applied Psychometrics, 1313 Pondview Ln E, Saint Joseph, MN 56374, USA.
Email: iqmcgrew@gmail.com
As described in the introduction to this special CJSP issue, although motivational characteristics of students have long been recognized as important variables for understanding and modifying students school achievement, the topic has largely been ignored in school psychology (SP) training and professional development (Daniels & Dueck, 2022). Reported average effect sizes for motivation (0.49) and motivational self-regulated learning (SRL; 0.69) interventions on academic attainment and motivation-related outcomes (Dignath & Büttner, 2008; Lazowski & Hulleman, 2016) should command the attention of SPs. Yet, as described by Daniel’s and Dueck (this issue), the field of SP has been hindered in efforts to leverage student achievement motivation characteristics due to a lack of frameworks that integrate the diverse range of constructs present in the motivation literature. Finally, early studies investigating the impact of the COVID-19 pandemic on academic learning have suggested that achievement motivation enhancing constructs (e.g., goal orientations, self-beliefs, engagement, interests, perceptions) have been significantly impacted by the disruption of traditional educational learning conditions (Daniels et al., 2021; Lee et al., 2021). With an increase in distance and hybrid models of learning, the ability of students to be more independent, motivated, and self-regulated learners may now be more important than ever.

The Motivation Jingle-Jangle Jungle (J³)

Achievement motivation, engagement, goal orientation, locus of control, social-emotional learning, self-efficacy, self-regulated learning, self-determination, the Big 5, grit, and so on. Where does motivation fit in this dizzying array of psychological constructs in the jingle jangle jungle? SPs may be overwhelmed by the plethora of terms and theories relevant to contemporary motivation constructs. Yet, as presented in this special CJSP issue on motivation, understanding the motivation and SRL of students should occur with regularity in the day-to-day practice of SPs. What are SPs to think?

First, motivation is described here as the cohesive or centripetal force that binds together the core elements of the classic trilogy-of-the-mind (cognition, conation, affect; Hilgard, 1980) in the proposed Cognitive-Affective-Motivation Model of Learning (CAMML). Despite no consensus motivation construct taxonomy (Elliot et al., 2017; Hattie et al., 2020; Murphy & Alexander, 2000), the goals of this paper are two-fold. First, SPs need to understand the core characteristics of achievement competence motivation. Second, SPs need a whole-child framework to situate motivational constructs alongside cognitive and affective constructs. The CAMML framework, built on Richard Snow’s model of aptitude complexes and the concept of “crossing the Rubicon” to engaged learning, is presented as an overarching cognitive-affective-conative framework from which SP’s can organize educationally relevant student characteristic information to enhance diagnosis and intervention.

Standing on the Shoulders of Giants

The definition of achievement competence motivation, which is the core of the motivation component of CAMML, is derived from Elliot et al.’s (2017) Handbook of
Competence and Motivation—the initiation and direction of persistent, sustained, and self-regulated behavior towards a satisfactory level of success on cognitively implicit or explicit achievement goals. Reflecting the influence of Bandura’s (1986) social cognitive theory on motivation, individuals are considered agentic contributors to their lives via proactive self-organization, regulation, and reflection. Thus, achievement competence motivation includes the sources or orientations, self-beliefs, and self-regulation of motivation in the pursuit of goals. This contemporary conceptualization of motivation was foreshadowed in the writings of Richard Snow, whose work serves as the foundation of the CAMML framework. Snow’s work built on the cumulative effort of scholars who sought to identify conative (aka., non-cognitive) individual difference constructs to sit alongside cognitive abilities to explain intellectual functioning and academic performance.

Motivation, in the context of the study of cognitive abilities, can be traced to the early 1900’s. Spearman (1927), the father of general intelligence (g), recognized the importance of conative abilities when he stated that “the process of cognition cannot possibly be treated apart from those of conation and affection [emphasis added], seeing that all these are but inseparable aspects in the instincts and behavior of a single individual, who himself, as the very name implies, is essential indivisible” (p. 2). David Wechsler similarly stated that “when our scales measure the nonintellectual as well as intellectual factors in intelligence, they will more nearly measure what in actual life corresponds to intelligent behavior [emphasis added]” (Wechsler, 1943). Finally, Raymond Cattell, when describing how individuals invest their fluid intelligence (gf) to acquire crystallized intellectual abilities (gc) (i.e., Cattell’s investment hypothesis; Schneider & McGrew, 2018), considered personal investment as occurring through personality and affective constructs. Cattell’s (1987) wise words, written over 30 years ago, still apply to the state-of-the-art of SPs limited conceptual integration of cognitive, conative and affective constructs in understanding student learning—“The school psychologists of the first half of this century made a big mistake in trying to estimate school performance and scholarship readiness from the I.Q. alone. Typically, only half the variance in grades is thus accounted for, and, as we now realize . . . much of the rest can be accounted for by predictions from personality and motivation measures” (p. 435).

The APA Dictionary of Psychology (VandenBos, 2007) defines conation as “the proactive (as opposed to habitual) part of motivation that connects knowledge, affect, drives, desires, and instincts to behavior. Along with cognition and affect, conation is one of the three traditionally identified components of mind” (p. 210). The cognition, affection, and conation trilogy-of-the-mind “originated in the German faculty psychology of the 18th century but was adopted by the association psychologists of the 19th century of Scotland” (Hilgard, 1980, p.107), and has endured as the overarching model for describing the division of labor characterizing intellectual functioning. Eventually conation experienced a demotion or was merged with affection and the pair considered lessor associates of cognition (Snow & Farr, 1987). A central thesis of this article is that this ageless trilogy should be resurrected in the form of a revised academic aptitude framework.
Motivation’s Place in an Updated Trilogy-of-the-Mind

CAMML has its origins in McGrew and Evans (2004) National Center of Educational Outcomes (NCEO; https://nceo.info/) report that advocated for high expectations for students with disabilities during the US NCLB-driven educational reform efforts (circa 2002–2015). McGrew and Evans (2004) reminded professionals and policymakers that IQ tests are fallible predictors of expected achievement as achievement test scores are normally distributed around every IQ score (after adjusting for regression to the mean). Expected achievement for any IQ score can display a band of expected achievement close to 22 standard score points (±11) for approximately 2/3 of the population. The point is clear—IQ test scores should not be used as an excuse to formulate lower academic expectations for students with disabilities. We need to look beyond IQ.

After a comprehensive review of the literature, McGrew et al. (2004) concluded that Richard Snow’s school-related aptitude research program provided a provisional taxonomy for integrating individual difference constructs as per the trilogy-of-the-mind framework (Corno et al., 2002; Snow & Farr, 1987). Unfortunately, Snow’s work has inexplicably flown under the radar screen of most of SP. It is hoped this article corrects this oversight and places motivational constructs in a “big picture” perspective.

The CAMML motivation (conative) constructs are drawn from a review of over a dozen motivation-related theories. As depicted in the left half of the model in Figure 1, the motivational constructs are organized as per Snow’s two primary conative constructs of motivation and volition.

The Motivation Component of the CAMML Framework

Motivational (Conative) Constructs

Hattie et al. (2020) and Murphy and Alexander’s (2000) reviews delineate major paths through the motivation jingle-jangle-jungle. The motivation domain represents the sources for initiating specific actions and includes the subareas of achievement orientations and self-beliefs (see Figure 1). The most construct valid achievement orientation subdomains are academic goal orientation, academic intrinsic motivation, and academic interests. Self-belief constructs, of which there are many, are restricted to academic self-concept and self-efficacy. Self-beliefs are motivational as they prompt a student to either invest in and approach certain academic tasks, or conversely, prompt a student to avoid certain academic tasks. Given the absence of a consensus motivation construct taxonomy, these motivation and volition constructs are represented in Figure 1 as practice-friendly sets of questions. These questions help organize informal and formal assessment information related to student motivation. Definitions of the core motivation terms are available at http://www.iapsych.com/motivationdefs.pdf.

Achievement orientations and self-beliefs produce the first three states of motivational readiness to act (wish→want→intention→action), or what is frequently called
the planning, pre-decisional or prepatory phase of motivation (Corno, 1993; Heckhausen & Gollwitzer, 1987; Huh & Reigeluth, 2017). The motivation constructs can be considered the drivers (in the sense of energizing and propelling something forward) of behavior.

In Figure 1 the achievement orientation and self-belief constructs are organized around core achievement domains (hexagon white spaces). This schematic illustrates the trend in contemporary achievement motivation research towards academic or task-domain specific constructs (Murphy & Alexander, 2000). The constructs surrounding the central achievement domain represent the finding, either based on causal or structural research (e.g., see Payne et al., 2007), that during motivated learning these constructs are interconnected much like constellations, configurations, complexes, or, in the case of self-beliefs, self-schemas (Murphy & Alexander, 2000; Pomerance et al., 2021). These construct complexes do not represent latent factors. The complexes indicate that the neighboring constructs are often correlated or represent different facets or dimensions of a singular construct (e.g., self-concept as comprised of knowledge and evaluative components; Pomerance et al., 2021). In simple terms, measures of these different motivation constructs tend to “hang together” in empirical studies or often overlap in definitional space in the motivation literature.

Volition, a relatively old psychological term that has waxed and waned in use over time, represents the post-decisional, action, or performance phase of motivated learning. In contemporary research volition has been replaced by terms like action controls and self-regulated learning (SRL). This domain, which is typically not considered domain-specific, is conceptualized as the directors of behavior, in the sense of controlling, managing, and regulating. SRL is related to, but should not be confused with,
self-regulation, meta-cognition, or executive functioning. SRL is subsumed by the more general concept of self-regulation which can focus on cool (cognitive) or hot (emotion) regulatory mechanisms. “SRL is a subtype of self-regulation directed toward academic achievements and non-academic skill development (e.g., musical or athletic skill). Thus, learning is a core focus of SRL” (Callan et al., 2020).

Snow (1996) suggested that SRL was the “overarching conative concept” (p. 262) and thus, subsumes all motivation and SRL (volition) constructs. Although six primary SRL models are present in the literature, the three- and four-phase Zimmerman (2001) and Pintrich (Pintrich & Zusho, 2002) models are the most dominant and research-based (Callan et al., 2020; Panadero, 2017). The similarities between these two models resulted in the combined three-phase SRL model presented in Figure 1 (also see Puustinen & Pulkkinen, 2001). It should be noted that the neat, tidy, and idealized components and cyclical phases in SRL models fail to accurately capture the fluid nature of these core motivational and self-efficacy beliefs during learning (e.g., see the Continuous-Change Framework for self-regulated learning; Huh & Reigeluth, 2017).

The Affective-Conative (Motivation) Link

The model in Figure 1 presents the hypothesized link between the affective and conative constructs of motivation and self-regulated learning (SRL or volition). The distal-to-proximal learning influence link between affective (personality) and conative constructs (motivation and SRL) is mediated primarily by the Big 5 personality traits of Openness to Experience (O) and Conscientiousness (C) (Hübner et al., 2021; Mammadov, 2021) and 8 of 17 social-emotional facets. The affective→conative bridge portrayed in Figure 1, which indicates that personality trait effects are transmitted or mediated through the more proximal conative characteristics, is grounded in multiple sources of research (Burrus & Brenneman, 2016; Corno et al., 2002; Hübner et al., 2021; Lipnevich et al., 2016; Mammadov, 2021; Poropat, 2009; Vedel, 2014). This link has been solidified by recent research integrating social-emotional (SE) constructs within the Big 5 theory, the consensus taxonomy of personality traits. The Big 5 model (John et al., 2008) includes the traits of Extraversion (E), Agreeableness (A), Conscientiousness (C), Negative emotionality (N), and Open-mindedness (O).

Led by researchers at the Ayrton Senna Institute in Brazil, an international team of scholars integrated the most prominent SE models into a single Big-5 organized framework (Abrahams et al., 2019; John & De Fruyt, 2015). This was followed by a series of analyses of item pools of commonly used SE measures (e.g., personality, self-beliefs, grit, locus of control, self-efficacy, self-esteem, etc.). The result was the validation of the SENNA SEMS (social-emotional) model and inventory (Abrahams et al., 2019; Pancorbo et al., 2020; Primi et al., 2016). The 17 SENNA SEMS social-emotional facets (see Figure 1) provide the intermediate mediating link between affective (Big 5 personality) and conative (motivation and SRL) constructs. The SENNA SEM facets, and particularly the Open-mindedness (O) facets of curiosity to learn, creativity, imagination, artistic interest and the Conscientiousness/Self-management (C)
facets of determination, organization, focus, persistence, and responsibility, connect the more general, stable and distal-to-learning personality traits with the more narrow, malleable, and proximal-to-learning motivational constructs. The affective personality constructs are similar to the concept of dispositions (i.e., the tendency or typical way of acting or feeling).

Crossing the Rubicon to Learning Model

The complete CAMML framework is presented in Figure 2 and is an adaptation and extension of Snow’s dynamic conation model of school-related learning (Corno, 1993). It requires, in addition to the affective constructs, cognitive constructs. Cognition is represented by the contemporary CHC theory of cognitive abilities (McGrew, 2009; Schneider & McGrew, 2018).

The CAMML framework can assist SPs see the “forest-from-the-trees” and thus, increase the chance of successfully integrating motivation concepts in their daily practice. CAMML incorporates the seminal work of Heckhausen who linked motivation and SRL in the commitment pathway model of action (wish → want → intention → action), or what Heckhausen described as the Rubicon model of action phases (Heckhausen, 2020; Huh & Reigeluth, 2017).

The achievement domain-specific self-belief and achievement orientation complexes are ordered from left to right, consistent with literature suggesting that self-beliefs are antecedent to motivational orientations during learning (Payne et al., 2007). Also, both domain-specific complexes are organized around the same core achievement domain, representing the concept that self-belief and achievement orientation complexes work synergistically to drive behavior to attain the target academic domain goals.
As illustrated in Figure 2, motivation and SRL constructs, distally influenced by affective (dispositional) constructs, drive the process of investing cognitive abilities (Cattell’s g_r and the CHC broad constructs of Gf, Gv, Ga, Gwm, Gl, Gr, and Gs) during learning. The end products are crystallized acquired knowledge systems (Cattell’s g_c; CHC broad Gc, Grw, and Gq). During the preparatory phase (wish \rightarrow want \rightarrow intention), learners contemplate and plan vis-à-vis a complex (likely person-specific) interaction of domain-specific achievement orientation and self-belief complexes. Once the decision is made to act, the learner commits to “crossing the Rubicon” to engaged learning toward the desired goals (wish \rightarrow want \rightarrow intention \rightarrow action). Performance and appraisal SRL mechanisms are required to maintain, regulate, or correct (direct) the goal-directed learning processes. In simple terms, motivation constructs kick start (drive) the commitment pathway to learning which then requires SRL mechanisms to steer (direct) the course to attain the desired goals. Together Figures 1 and 2 represent the overarching CAMML framework SPs can use to better understand: (a) how motivation and SRL constructs can be situated in the individual differences and learning literature, (b) how CHC cognitive abilities are invested in learning (via motivation and SRL), and (c) how distal personality traits (dispositions) indirectly impact learning readiness.¹²

Snow’s Aptitude Complexes

The typical meaning of aptitude in English-language mainstream psychology has strayed from the original European usage that focused on the person-in-situation and defined aptitude as not being “limited to intelligence or some fixed list of differential abilities but includes personality and motivational differences along with styles, attitudes, and beliefs as well” (Snow, 1991, p. 205). Aptitude, as per Corno et al. (2002), includes “aspects of personality—achievement motivation, freedom from anxiety, appropriately positive self-concept, control of impulses, and others—are aptitudes as well, contributing importantly to coping with some challenges (p. 4).” Snow’s model of aptitude is central to the CAMML framework as it includes most all prominent personal characteristics that affect one’s learning (Kyllonen & Lajoie, 2003).

Academic aptitude is the multivariate repertoire of cognitive-conative-affective (CAMML) complexes or constellations (see Ackerman, 2018; Kyllonen and Lajoie, 2003) that represents a student’s readiness to learn and perform well in different settings (Corno et al., 2002). The concept of readiness to learn implies potentiality to profit from instruction, or the ability to acquire competence (Bingham, 1942, p. 18). This contrasts with the concept of ability, which has a more deterministic connotation and is typically understood as a power to carry out a specific type of task (e.g., reasoning) at a certain threshold level of competence (Corno et al., 2002).

Pivotal to appreciating Snow’s thinking is recognizing that aptitude is more than cognitive abilities. Conative constructs, such as motivation and SRL, play a prominent role in explaining how students invest (or fail to invest) their cognitive abilities to achieve certain outcomes. Consistent with comprehensive literature reviews (Nagaoka et al., 2015), recent large scale research studies (Casillas et al., 2012; Kuo et al., 2021)
that included measures of the cognitive-conative-affective (CAMML) triad reported that conative and affective measures provide important prediction of school achievement above and beyond cognitive measures.

Snow’s concept of academic aptitude considers the totality of an individual’s cognitive (Cattell \(g / g_c \) and CHC broad abilities) and personal investment characteristics (i.e., affective variables such as the key Big 5/SENNA SEM trait facets; motivation and SRL conative variables) as working synergistically in the form of CAMML complexes to explain achievement outcomes. This is portrayed in the complete CAMML model presented in Figure 2. The CAMML aptitude complex model is conceptually like Ackerman’s (2018) Intelligence-as-Process, Personality, Intelligence-as-Knowledge, Interests (PPIK) model of trait complexes.13

Relevance to the Practice of School Psychology

Integrating CAMML aptitude-trait complexes, which emphasize that motivation and SRL constructs are the focal personal investment learning mechanisms, in contemporary SP practice is an aspirational goal. The constraints of regulatory frameworks and the understandable skepticism of disability-specific advocacy groups will make such a paradigm-shift difficult. However, embracing the model of CAMML aptitude complexes may be what SP and education need to better address the complex nuances of individual differences in student learning. Snow’s concept of aptitude, if embraced in reborn form as the CAMML framework, could reduce the unbalanced emphasis on intelligence testing in SPs assessment practices. However, the greatest impediment to change may be the inertia of tradition in SP.

SP Should Recognize Snow’s Seminal Work on Aptitudes

Consistent with the introductory article in this issue (Daniels & Dueck, 2022) that reported finding few motivation articles in past CJSP issues, special issues devoted to motivation in the *Journal of School Psychology* (Gilman & Anderman, 2006) and *School Psychology Review* (DiPerna & Elliott, 2002) included no stand-alone reference to the seminal work of Snow. This neglect is also present in recent SP articles that addressed motivational constructs (e.g., Callan et al., 2020; Cleary, 2009; Cleary et al., 2010). In partial defense of SP, the impact of Snow’s nearly 40 years of educational psychology research was derailed by his premature death in 1997, a time when he had preliminary plans for two books to present his ideas, concepts, and models.

Most SP assessment resources either fail to recognize Snow’s seminal work on learning aptitudes or perpetuate the restricted notion of aptitude as either general intelligence or a mixture of cognitive abilities (e.g., Canivez, 2013; Kranzler & Floyd, 2020). In a recent *CJSP* article addressing the value of popular intelligence testing practices in SP (Farmer et al., 2021), seven assessment sources were listed. Even though one included the term “aptitude” in its title (Canivez, 2013), none included any earnest discussion of Snow’s concept of aptitude, aptitude complexes, or his proposed taxonomy of aptitude characteristics. All sources either: (a) included no aptitude term
in their topic index, (b) equated aptitude with abilities measured by intelligence tests, (c) included no reference to Snow’s writings, or (d) only included citations to Snow’s collaboration with Lee Cronbach in their seminal publication on aptitude-treatment-interactions (ATI’s; Cronbach & Snow, 1977). Reference to the Cronbach and Snow’s (1977) classic ATI publication was typically to underscore the point that cognitive-based educational ATI’s have not been sufficiently proven, typically in the context of arguments against the value of intelligence test interpretation beyond the total g IQ score (Farmer et al., 2021; Kranzler & Floyd, 2020).

In this authors opinion, mainstream SP has concluded that Snow’s primary contribution to SP is his 1977 book (with Cronbach) that has been interpreted as the seminal verdict that IQ-based subtest or composite score-based ATI’s do not exist. This conclusion is accurate and is undisputed (Kranzler & Floyd, 2020). Snow’s early ATI research was indeed focused on cognitive abilities and failed to demonstrate robust ATI’s beyond psychometric g. As a result, much of academic SP has been “stuck on g”, a theoretical construct recently characterized as the being a “black hole” (Bruton, 2021) or the Loch Ness Monster of psychology (McGrew, 2021). Yet, as early as 1984, Snow was moving the Stanford Aptitude Research Project (started in 1974) to a broader whole-child definition of aptitude. Snow (1987) stated that “our descriptive theory development had to be limited to cognitive aptitude, at least initially, even though it was clear that conative and affective aspects of aptitude would eventually need to be incorporated” (p. 350). By 1987, Snow’s revised and expanded notion of aptitude had crystallized. Snow and Farr (1987) stated that “the general improvement of instruction ultimately requires a whole person view that integrates cognitive, conative, and affective aspects of learning, and individual differences therein. The convenient fiction that has long separated theories of cognitive and affective behavior, and caused the conative aspects of behavior to be more or less ignored, must eventually be discarded in the analysis of aptitude, learning, and instruction. These are three facets of individual performance, not isolated provinces, and they undoubtedly interact in complex ways during learning and problem solving” (p. 1). Snow (1987) had moved on to the “study of aptitude complexes—wherein the joint functioning of cognitive, conative, and affective processes in individual differences in learning from instruction is examined” (p. 12). This message was recently echoed by Protzko and Colom (2021) who reminded psychologists that one cannot understand intelligence in isolation from other psychological traits as “all the relevant variables preceding ostensible behavior are cooked in the same pot (the brain) (p. 5).” The CAMML framework is proposed to help SPs understand and integrate Snow’s concept of academic aptitude complexes in their work with students.

What is troublesome for our profession is that many SP leaders, trainers, and researchers have ignored the corpus of Snow’s aptitude research save for his seminal collaboration with Cronbach and Snow (1977). SPs are encouraged to read the posthumously published Remaking the Concept of Aptitude: Extending the Legacy of Richard E. Snow (Corno et al., 2002) to appreciate Snow’s significant contributions to education and to understand how the CAMML Rubicon model of motivated learning is built on the shoulders of a genuine giant in educational psychology.
Finding a Path Through the Jingle-Jangle Jungle (J^3)

The term aptitude is buried deep in the Amazon J^3. The term carries the historical baggage of being the principal term describing decades of testing designed to match individuals to specific occupations. SP needs fresh terms that accurately reflects Snow’s ideas of learning, academic readiness, aptitudes, and aptitude complexes, which are represented as the individual difference constructs in CAMML. But we must be careful to not add more confusion to the psychology J^3. At the most technical level, this author proposes using learning aptitude or learning readiness complexes (LACs, LRCs, or LARCs) to describe each student’s unique amalgam of CAMML individual difference characteristics.

Until we attain clarity regarding the most important, yet hazy constructs in the motivation J^3, SPs are urged to use the pragmatic set of questions featured in the motivation component of the CAMML model (see Figure 1). The pragmatic motivation and SRL questions can structure applied discourse until a robust consensus construct taxonomy is established. Using the language of personal investment, committing to the pathway of engaged learning, or crossing the Rubicon might be better suited to conveying the essence of the causal mechanisms of motivated SRL. Perhaps the colloquial terms of dispositions, drivers, and directors (the 3-D model) should be used to discuss motivation SRL individual difference constructs.

This author is not suggesting a complicated multivariate psychometrically derived CAMML-based aptitude complex metric to diagnose and classify students for special services. Enough journal space and social media discourse bandwidth has been devoted to debating different assessment, diagnostic, and classification systems, especially for SLD. Rather, the proposal is to embrace the concept of understanding the whole child by broadening the scope of traditional SP assessment practices to regularly assess key CAMML learning characteristics that move beyond IQ.

Cognitive assessment would still have a place in assessments, but it would require a movement away from the knee-jerk or routine comprehensive or core IQ test battery administration. Cognitive assessments would be more limited, selective, and referral-focused assessments (McGrew & Wendling, 2010) of the key achievement domain-specific cognitive abilities for the specific referral concern (e.g., fluid reasoning-Gf, visual spatial-Gv, and working memory-Gwm in the case of a middle school student with math difficulties). Kranzler and Floyd (2020) have similarly endorsed selective cognitive ability testing within an evidence-based model of intelligence testing practices. It should be noted that SPs have long possessed cognitive batteries that feature selective testing options (e.g., all editions of the WJ batteries) and recommendations that users of the popular cross-battery method design “highly individualized assessment batteries” (Flanagan et al., 2018, p. 770). Per chance embracing the CAMML aptitude complex assessment approach can provide SPs the motivation to “cross the Rubicon” to embrace more selective, focused, and time efficient intelligence testing.\(^\text{15}\)

CAMML aptitude complex-oriented assessments would focus on describing the unique and more manipulable instructional levers for students, be it accommodating
for a specific cognitive weaknesses (e.g., weakness in Gf or fluid reasoning as mentioned in the earlier math-related assessment example), trying to modify locus of control or competence (growth or fixed) mindsets, working with (or trying to modify) a student’s particular goal orientation, increasing self-efficacy in an specific academic domain, or some mixture of the above. In response-to-intervention (RTI) models, these assessments could be used when and if a student demonstrates resistance to interventions. The proposed CAMML aptitude complex approach would focus on describing and understanding for interventions—not diagnosis or classification.

Closing Thoughts

Although interest in motivation and SRL has increased among SP researchers, practicing SPs infrequently assess these student characteristics due to a lack of training and expertise in motivation and SRL theories, research, assessment tools, and interventions (Cleary & Zimmerman, 2012). There is a need for increased pre- and in-service SP training. Also, the proposed CAMML framework, although built on nearly a century of research and theorization, is clearly speculative and needs empirical investigation.

Systemic paradigm changes are often facilitated by abrupt threats to societies (Gilman & Codd, 2020). The current world-wide COVID-19 crises, which has had a major impact on the education of children now, and likely into the future, may provide the necessary nudge for change. Students learning via distance learning models, or those engaged in constantly shifting hybrid models of learning, will need stronger self-motivation and independent SRL abilities in the shift away from the traditional “industrial-age” paradigm of education (i.e., regularly scheduled, structured, in-class teacher-directed learning) to an “information-age” paradigm of education, a paradigm that requires a fuller expression of motivated SRL (Huh & Reigeluth, 2017). Positive motivation and SRL competencies may become just as, or more important and valued, than traditional academic outcomes. New mixtures of CAMML aptitude complexes may be required to adapt and learn to the externally induced changes in the delivery of instruction. The time may never be better for SP to take a fresh look at contemporary motivation theory, constructs, and research, embedded in the Snow-inspired CAMML aptitude complex framework, by paradoxically going back-to-the-future guided by the wisdom of multiple giants in the field of educational psychology.

Declaration of Conflicting Interests

The author declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: The author declares a possible conflict of interest due to his paid consultancy with the Ayrton Senna Institute referenced in this paper, both in 2016 and from 2020 to current. The author declares a financial interest in the WJ IV assessment battery which is also mentioned in this paper.

Funding

The author received no financial support for the research, authorship, and/or publication of this article.
Notes

1. The jingle-jangle jungle “exists when erroneous assumptions are made that two different things are the same because they have the same name (jingle fallacy) or are identical or almost identical things are different because they are labeled differently (jangle fallacy)” (Schneider & McGrew, 2018, p. 143; see Kelley, 1927, for original description of the jingle-jangle fallacy.

2. “Non-cognitive” has been used by a diverse array of individuals both within and outside of scientific psychology (e.g., educators, psychologists, economists, policy makers) to reference a wide array of skills and abilities. The widespread yet inconsistent meaning of the word has led to a general dissatisfaction with the term (Kell, 2018).

3. The use of the lower-case italic g_r and g_c notation recognizes that Cattell’s two general abilities are more consistent with the notion of general intelligence (g) as articulated by Spearman. This subtle, yet important difference from Horn and Carroll’s broad CHC notation, is maintained in this article. See Schneider and McGrew (2018) for discussion.

4. The motivation constructs included in the CAMML framework are drawn from earlier efforts to develop the Model of Achievement Competence Motivation (MACM). A detailed explanation of the evolution and development of the MACM model is available elsewhere (McGrew et al., 2004). A series of recent MACM PowerPoint® modules are available at https://tinyurl.com/y3sjmj9w.

5. It should be noted that the motivation domain focuses on core individual difference constructs and does not include environmental factors or other potentially important motivation constructs such as cost/benefit evaluative judgements or task attributes as included in the popular expectancy-value model of academic motivation (Eccles & Wigfield, 2002).

6. The hexagons with the “...?” notation represent the never-ending evolution of the motivation jingle-jangle-jungle.

7. Conscientiousness (C) is the most robust Big 5 predictor of academic performance. The Openness to Experience (O) trait relationship with academic performance may be moderated by age and education level, with decreasing strength as a function of age and increased educational level. Agreeableness (A) has also demonstrated significant, albeit weak, relations with academic performance, moderated by education level (i.e., stronger at younger grades; Mammadov, 2021). Hübner et al.’s (2021) research has suggested that C is more predictive of academic measures that are more multidimensional, lower in standardization, and higher on curriculum validity and instructional sensitivity. In contrast, O is more predictive of academic measures higher on standardization and cognitive ability saturation and lower on curriculum validity and instructional sensitivity.

9. The Harvard Explore SEL web page (https://tinyurl.com/y6ysb3sn) allows individuals to navigate and compare over three dozen major SE frameworks.

10. The temperament traits and characteristic moods included in the Figure 1 are not primary features of the CAMML model.

11. Today “crossing the Rubicon” is an idiom describing a decision point of no return. It is based on Julius Caesar’s historical crossing of the Rubicon River that precipitated the Roman Civil War. https://en.m.wikipedia.org/wiki/Crossing_the_Rubicon.
12. It is native to suggest that motivated SRL follows the neat linear process portrayed in Figure 2. The messy world of classrooms includes competing goals, some of which require a focus on the self-regulation of affective well-being goals of the student.

13. The CAMML aptitude complexes are like Ackerman’s conceptualization of complexes as variables that in some way intercorrelate as amalgams. This differs from Snow’s original notions where complexes were conceptualized as working as interactions (in the classic experimental psychology sense of the term; Kyllonen & Lajoie, 2003).

14. As a warning, this book is recommended for the concepts and ideas. It is dated and was written posthumously by a committee of Snow’s ex-students and, at times, does not flow easily. . .after all, it was written by a committee.

15. Although the focus of this article is on the more traditional model of SPs vending services via a focus on individual children, the CAMML framework described here is also relevant to calls for more systemic, prevention, and indirect SP service delivery focused on changing school or classroom practices for all children (Perfect & D’Amato, 2020).

References

Bruton, O. J. (2021). Is there a “g-neuron”? Establishing a systematic link between general intelligence (g) and the von economo neuron. *Intelligence, 86*, 101540.

Heckhausen, J. (2020). Integrating and instigating research on person and situation, motivation and volition, and their development. Motivation Science, 6(3), 185–188.

Hübner, N., Spengler, M., Nagengast, B., Borghans, L., Schils, T., & Trautwein, U. (2021). When academic achievement (also) reflects personality: Using the personality-achievement saturation hypothesis (PASH) to explain differential associations between achievement measures and personality traits. *Journal of Education & Psychology*. Advance online publication. https://doi.org/10.1037/edu0000571

Author Biography

Kevin S. McGrew is the owner and Director of the Institute for Applied Psychometrics and an Adjunct Research Professor at the Institute for Community Integration (University of Minnesota). He was a practicing school psychologist for 12 years and a Professor in Applied Psychology at St. Cloud State University for 10 years.